概率论

概率论

一个概率我们使用P(x) = [0 , 1]来表示,要注意时间发生的概率为零并不代表这个事件不会发生。比如一张桌子上有一个点,把一根针扔进这个孔里面的概率是0,因为针的点相对于这个桌子的面积是0,但是扔无数遍就是有一次是会扔到的。


1.累计分布函数:

就是把概率相加起来。累计函数一定是单调递增的,最小为0最大为1。

如果有一个函数y = f(x)他的值域是在0到1之前,可以看做是这个函数是x事件发生的累计分布函数,比如Sigmoid函数就是这样了。


2.古典概型:


首先先算一共发生的情况,再算事件的情况:

所有的情况:N ^ n

A事件的情况:从N个盒子中选n个盒子,CNn。


3.装箱问题




4.商品推荐




5.概率公式


6.泊松分布


例题:





7.期望




8.协方差


协方差可以进行趋势的比较:


Var是方差



9.偏度

偏度是衡量随机变量概率分布的不对称性,是相对于平均值不对称程度的度量。

比如这个图像,由于左侧的尾巴把右侧的要长,所以这是属于左偏。也称为是负偏。

右侧的尾巴比左侧的要长,属于右偏。也称为正偏。

偏度公式:



10.峰度

峰度是概率密度在均值出峰值高低的特征,峰度公式:


减去3是为了让正态分布的峰值是0,因为正态分布的峰度是3。

也被称为是超值峰度。

超值峰度为正,称为尖峰态。

超值峰度为负,称为低峰态。


11.样本统计量

样本方差除于n-1是为了无偏估计。

至于为什么要除n-1,如下证明:



12.样本的矩


一阶样本原点矩就是样本均值,二阶样本中心距就是伪方差。


13.矩估计


矩估计其实就是用样本来估计总体。


14.最大似然估计

贝叶斯公式带来的思考:

给定某些样本D,计算A1,A2,A3......出现的概率,即P(Ai | D)


P(D)就是样本的概率,而样本是给定的,所以P(D)是常数。

若这些样本的概率P(Ai)都是相同的,那么就可以直接进行到最后一个公式。

那么如果估计些概率P(Ai)发生在这个样本上的概率(P(D | Ai)),就可以直接使用P(Ai|D)来预测了。


要达成最大似然函数的条件,首先需要Xi之间是互相独立的,因为只有独立才有P(x,y) = p(x) * p(y)

为了计算方便,玩玩是求对数,使得计算方便,然后求导数就是极值了。

本质就是找出与样本分布相近的分布。

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_36686996/article/details/79946108
个人分类: 数学
上一篇微积分
下一篇线性代数
想对作者说点什么? 我来说一句

概率论与数理统计pdf

2008年10月21日 5.37MB 下载

没有更多推荐了,返回首页

关闭
关闭