1、项目介绍
技术栈:
python语言、Flask框架、Echart可视化、MySQL数据库、HTML
机器学习、基于随机森林算法,预测股票的收盘价
2、项目界面
(1)股票成交量成交额分析

(2)股票价格分析

(3)股票换手率分析

(4)股票价格预测分析1

(5)股票价格预测分析2

(6)个人中心

(7)注册登录

3、项目说明
1. 股票成交量成交额分析
功能描述:
该模块用于展示股票的成交量和成交额数据。
通过可视化图表(如柱状图或折线图)展示股票在不同时间段内的成交量和成交额变化。
用户可以直观地了解股票的市场活跃度和资金流入流出情况。
技术实现:
使用 ECharts 提供的可视化组件绘制图表。
数据从 MySQL 数据库中提取,通过 Flask 后端接口传递到前端页面。
2. 股票价格分析
功能描述:
展示股票价格的历史走势。
提供价格的开盘价、最高价、最低价和收盘价的可视化分析。
用户可以查看股票价格的波动趋势,分析其市场表现。
技术实现:
利用 ECharts 的 K 线图或折线图展示价格走势。
数据来源于 MySQL 数据库,通过 Flask 后端进行数据处理和传递。
3. 股票换手率分析
功能描述:
换手率是衡量股票交易活跃程度的重要指标。
该模块通过图表展示股票的换手率变化,帮助用户了解股票的市场热度和交易活跃度。
技术实现:
使用 ECharts 的柱状图或折线图展示换手率数据。
数据从 MySQL 数据库中提取,通过 Flask 后端接口传递到前端页面。
4. 股票价格预测分析1
功能描述:
基于机器学习模型(如随机森林分类器)对股票价格进行预测。
提供未来一段时间内股票价格的预测趋势。
技术实现:
使用 Python 和 Scikit-learn 构建随机森林分类器模型。
数据预处理后输入模型进行预测,结果通过 Flask 后端传递到前端页面展示。
5. 股票价格预测分析2
功能描述:
进一步展示股票价格预测的详细分析,可能包括预测的置信区间、预测误差等。
提供用户对预测结果的详细解读。
技术实现:
结合 ECharts 可视化展示预测结果。
数据处理和模型预测通过 Flask 后端完成。
6. 个人中心
功能描述:
用户可以查看自己的账户信息、操作历史、收藏的股票等。
提供个性化的用户体验。
技术实现:
使用 HTML 和 Flask 框架构建用户界面。
数据存储在 MySQL 数据库中,通过 Flask 后端进行用户验证和数据管理。
7. 注册登录
功能描述:
提供用户注册和登录功能。
用户可以通过用户名和密码登录系统,访问个人中心和其他功能模块。
技术实现:
使用 Flask 的用户认证模块(如 Flask-Login)实现用户登录功能。
用户信息存储在 MySQL 数据库中,通过 Flask 后端进行数据验证和管理。
4、核心代码
5、源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅
感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻
1万+

被折叠的 条评论
为什么被折叠?



