yolov8训练环境安装一些坑

安装环境

不能使用conda安装pytorch,如果使用安装的conda可以让torch.cuda.is_available()为true,但是Ultralytics YOLOv8 还是显示无法使用GPU!

  1. 在虚拟环境安装yolov8,并激活
  2. 安装requirements.txt里面的包,但是注释掉torch,因为默认安装的为cpu版本
# Ultralytics requirements
# Usage: pip install -r requirements.txt

# Base ----------------------------------------
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.1
Pillow>=7.1.2
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
# torch>=1.7.0
# torchvision>=0.8.1
tqdm>=4.64.0

# Logging -------------------------------------
tensorboard>=2.4.1
# clearml
# comet

# Plotting ------------------------------------
pandas>=1.1.4
seaborn>=0.11.0

# Export --------------------------------------
# coremltools>=6.0  # CoreML export
# onnx>=1.12.0  # ONNX export
# onnx-simplifier>=0.4.1  # ONNX simplifier
# nvidia-pyindex  # TensorRT export
# nvidia-tensorrt  # TensorRT export
# scikit-learn==0.19.2  # CoreML quantization
# tensorflow>=2.4.1  # TF exports (-cpu, -aarch64, -macos)
# tensorflowjs>=3.9.0  # TF.js export
# openvino-dev  # OpenVINO export

# Extras --------------------------------------
ipython  # interactive notebook
psutil  # system utilization
thop>=0.1.1  # FLOPs computation
# albumentations>=1.0.3
# pycocotools>=2.0.6  # COCO mAP
# roboflow

# HUB -----------------------------------------
GitPython>=3.1.24

创建requirements.txt并安装

pip install -r  requirements.txt

pytorch官网使用pip命令安装torch

pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117

pip list一下,如果torch后面不显示cu,那就表明装的是cpu版本,卸载torch,重新运行上面命令安装torch,再装多一次就是带cuda的torch了

torch                   1.13.1+cu117
torchaudio              0.13.1+cu117
torchvision             0.14.1+cu117

训练过程

指定device=0参数是,报错

TypeError: replace expected at least 2 arguments, got 1

定位到错行,并注释报错的行

v = v.replace(" ", "").replace('')  # handle device=[0, 1, 2, 3]
YOLOv8是一种目标检测算法,它是YOLO(You Only Look Once)系列的最新版本。使用GPU进行训练可以加快训练速度,提高算法的性能。下面是使用GPU训练YOLOv8的步骤: 1. 安装CUDA和cuDNN:首先,确保你的计算机上已经安装了NVIDIA的CUDA和cuDNN库。这些库可以提供GPU加速的功能。 2. 安装Darknet:YOLOv8是使用Darknet框架实现的,因此需要先安装Darknet。你可以从GitHub上的Darknet仓库中获取源代码,并按照说明进行编译和安装。 3. 准备数据集:在进行训练之前,需要准备好目标检测的数据集。数据集应包含标注好的图像和相应的标签文件,标签文件中包含了每个目标的类别和位置信息。 4. 配置网络参数:在Darknet中,YOLOv8的网络结构和训练参数都是通过配置文件进行设置的。你可以根据自己的需求修改配置文件,例如设置输入图像的尺寸、调整网络层数等。 5. 下载预训练权重:为了加快训练过程,可以使用在大规模数据集上预训练好的权重作为初始权重。你可以从Darknet官方网站或YOLO官方网站上下载预训练权重。 6. 开始训练:使用以下命令开始训练YOLOv8模型: ``` ./darknet detector train data/obj.data cfg/yolov8.cfg yolov4.conv.137 -gpus 0,1,2,3 ``` 这里的`data/obj.data`是数据集的配置文件,`cfg/yolov8.cfg`是网络的配置文件,`yolov4.conv.137`是预训练权重文件。`-gpus`参数指定要使用的GPU设备。 7. 监控训练过程:训练过程中,Darknet会输出训练的进度和损失值等信息。你可以根据需要进行监控和调整。 8. 保存模型:训练完成后,可以使用以下命令保存训练好的模型: ``` ./darknet detector save_weights data/obj.data backup/yolov8_final.weights ``` 这里的`data/obj.data`是数据集的配置文件,`backup/yolov8_final.weights`是保存模型的路径。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值