EasyEnsemble和BalanceCascade算法
不平衡样本分类问题不平衡样本如:标签为1的样本远远少于标签为0的样本常见的解决方法有:欠采样、过采样、欠采样与过采样结合、使用带标签权重的模型、SMOTE算法,下面介绍两种其他方法easyensemble:将bagging与Adaboost的方法结合起来的一种集成学习算法:(1)bagging体现于:每一次采样都使用Boosting的采样方法(bootstrap)对多数类(数量较多的类)样本集进行采样,使其样本数等于少数类(2)Adaboost体现于:将多数类采样得到的样本集与少数类的样本集的全



