数学小知识(长期更新)

###如果有任何地方写错了,欢迎在评论里指出

#前言
今天开始学习数论,大概就是学一些自己以前不会或者说搞得不是特别懂的东西。
原因
1.感觉以前学数论都是背了结论就跑,一直没有理解,感觉不仅容易忘,想起来还漏洞百出,特地来填一下坑。
2.感觉自己的数论太弱了,之前出了一个扩展欧拉定理都不会了QAQ
其实我就没会过
不管有用的没用的都学了一下,留个印象吧,至少可以装逼。
学习顺序大致是前面是后面的基础

#10.22下午
##整除的定义:
如果 n / m n/m n/m是一个整数,且 m > 0 m>0 m>0,那么就是整除,注意要 m > 0 m>0 m>0

##欧几里得算法:
gcd ⁡ ( 0 , n ) = n \gcd(0,n)=n gcd(0,n)=n
gcd ⁡ ( m , n ) = gcd ⁡ ( n % m , m ) \gcd(m,n)=\gcd(n\%m,m) gcd(m,n)=gcd(n%m,m)

##扩展欧几里得算法:
m ′ m + n ′ n = gcd ⁡ ( n , m ) m'm+n'n=\gcd(n,m) mm+nn=gcd(n,m)
求可行的 m ′ m' m n ′ n' n
m = 0 m=0 m=0时,使得 m ′ = 0 , n ′ = 1 m'=0,n'=1 m=0,n=1
反之另 r = n % m r=n\%m r=n%m
并用 r , m r,m r,m递归操作
由于 r = n − ⌊ n / m ⌋ ∗ m r=n-\lfloor{n/m} \rfloor*m r=nn/mm,(前面的是下取整)且 r r ′ + m m ′ = gcd ⁡ ( m , n ) rr'+mm'=\gcd(m,n) rr+mm=gcd(m,n)
然后把 r r r代过去就可以了

##算术基本定理
我才不会告诉你我没有认真看证明呢

##一些看似没什么用的定义:
欧几里得数和麦森数,麦森数质数

##阶乘的增长速度
n n / 2 < = n ! < = ( n + 1 ) n 2 n n^{n/2}<=n!<=\frac{(n+1)^n}{2^n} nn/2<=n!<=2n(n+1)n
证明挺简单的,不写了

##斯特林公式
误差大概是1/(12n),感觉没什么用。。

##求出n!含有多少个2,(不是2的类推):
朴素算法大家都会,就是 ∑ i = 1 ∞ ⌊ n / i ⌋ \sum_{i=1}^{\infty}\lfloor{n/i} \rfloor i=1n/i
然后log次久之后就都是0了
然后还有另外一种算法,定义 v ( n ) v(n) v(n)为n的二进制中1的个数
然后答案就是 n − v ( n ) n-v(n) nv(n)
这个大家可以化成二进制,然后考虑每一位对答案的贡献,就可以得出那个式子了

##当然还有上面那个问题答案的上界
a n s < n p + n p 2 + n p 3 + n p 4 + n p k ans<\frac{n}{p}+\frac{n}{p^2}+\frac{n}{p^3}+\frac{n}{p^4}+\frac{n}{p^k} ans<pn+p2n+p3n+p4n+pkn
k趋向与 ∞ {\infty}
用等比数列可以将该式子化成 a n s < n p − 1 ans<\frac{n}{p-1} ans<p1n
这个似乎也没什么用,但是我学了一下无穷几何级数求和

#10.22晚
(因为很困,所以效率极低)
##逆元
对于正整数 a x ≡ 1 ( m o d p ) ax\equiv 1\pmod p ax1(modp)
具体有什么用?当要对模数进行除法的时候可以改为乘他的逆元

原因(d为被除数):
d a ( m o d p ) = d a ∗ a ∗ x ( m o d p ) = d ∗ x ( m o d p ) \frac{d}{a}(mod p)=\frac{d}{a}*a*x(mod p)=d*x(mod p) ad(modp)=adax(modp)=dx(modp)

怎么求呢?
解不定方程(用欧几里得即可):ax+bp=1
正确性显然

快速幂: a ( p − 2 ) a^{(p-2)} a(p2)次方即为他的逆元
根据费马小定理:
a ( p − 1 ) ≡ 1 ( m o d p ) a^{(p-1)}\equiv 1\pmod p a(p1)1(modp)
a ∗ a ( p − 2 ) ≡ 1 ( m o d p ) a*a^{(p-2)}\equiv 1\pmod p aa(p2)1(modp)
要值得除以的是,这个这个定理是当p为质数且a,p互质的时候成立的,所以实用性没那么广

存在条件:a与p互质
因为当且仅当a和q互质的时候,不定方程有解(原因看下一个)
费马小定理成立,且费马小定理还必须当p时质数

##裴蜀定理
内容:ax+by=d有解的条件为d是gcd(x,y)的倍数
设g=gcd(x,y)
ax+by=g的情况一定有解,我有一个不靠谱的想法:既然构造方式都有了,又怎么会无解呢?
又因为x是g的倍数,y是g的倍数,所以ax+by当然也是g的倍数啦
所以当g不为1的时候,ax+by=1是无解的,所以逆元要求a和q互质

##法里级数
定义:阶为N的法里级数,是介于0到1之间分母不超过N的所有最简分数组成的数的集合,且按照递增的次序排列
构造方法:我们可以用插入法,来获得。。不是很想打太多字了。方法叫做Stern-Brocot树。如果N无限大,那么这棵树就无限深。你可以用这个“二分”出一个无理数两端无限接近的分数
做题用处:不怎么知道

##同余的知识
这个烂大街了。。就是炒了一下冷饭
还有就是 a k ≡ b k ( m o d p k ) ak\equiv bk\pmod {pk} akbk(modpk)
可以得出 a ≡ b ( m o d p ) a\equiv b\pmod {p} ab(modp)

##中国剩余定理与扩展中国剩余定理
用处:解同余方程
这个东西我以前没学过,今晚刚刚学的
放一下学习资料吧
中国剩余定理
扩展中国剩余定理
扩展中国剩余定理的板子:

#include<cstdio>
#include<cstring>
typedef long long LL;
LL exgcd (LL a,LL b,LL &x,LL &y)
{
	if (a==0)
	{
		x=0;y=1;
		return b;
	}
	LL tx,ty;
	LL d=exgcd(b%a,a,tx,ty);
	x=ty-(b/a)*tx;
	y=tx;
	return d;
}
int main()
{
	LL n;
	LL b1,m1;//第一个方程的余数和除数
	bool tf=true;
	scanf("%lld",&n);
	scanf("%lld%lld",&b1,&m1);
	for (LL u=2;u<=n;u++)
	{
		LL b2,m2;
		scanf("%lld%lld",&b2,&m2);
		LL A=m1,B=m2,C=b2-b1;
		LL X,Y;
		LL d=exgcd(A,B,X,Y);
		if (C%d!=0) {tf=false;break;}
		X=(X*(C/d)%(B/d)+(B/d))%(B/d);
		b1=m1*X+b1;
		m1=m1/d*m2;
	}
	if (!tf) printf("no solution!\n");
	else printf("%lld\n",b1);
	return 0;
}

#10.23晚
(今晚也没弄什么伟大的东西)
##一个不知道叫什么的定理
0 ( m o d m ) , n ( m o d m ) , 2 n ( m o d m ) , 3 n ( m o d m ) . . . . . . ( m − 1 ) n ( m o d m ) 0(mod m),n(mod m),2n(mod m),3n(mod m)......(m-1)n (mod m) 0(modm),n(modm),2n(modm),3n(modm)......(m1)n(modm),
d = g c d ( n , m ) d=gcd(n,m) d=gcd(n,m)
这m个数将会按照某种次序恰好组成 m / d m/d m/d个数的d个复制
我们可以得到
j n ≡ k n ( m o d m ) jn\equiv kn\pmod {m} jnkn(modm)
j ( n / d ) ≡ k ( n / d ) ( m o d m / d ) j(n/d)\equiv k(n/d)\pmod {m/d} j(n/d)k(n/d)(modm/d)
0 ≤ k ≤ m / d 0≤k≤m/d 0km/d的时候,就会出现这d个复制
特别的,当d=1的时候,我们发现这些数刚好就是 0 , 1 , 2...... m − 1 {0,1,2......m-1} 0,1,2......m1
根据雀巢原理,当 n ⊥ m n⊥m nm的时候
j n ≡ k n ( m o d m ) jn\equiv kn\pmod {m} jnkn(modm)
j ≡ k ( m o d m ) j\equiv k\pmod {m} jk(modm)
由此可得,每隔m个数才会出现一组循环节

##费马小定理
性质 n p − 1 ≡ 1 ( m o d m ) n^{p-1}\equiv 1\pmod {m} np11(modm)
p是质数且 n ⊥ p n⊥p np

通过上面那个不知道什么东西可以知道: n ( m o d p ) , 2 n ( m o d p ) . . . ( p − 1 ) n ( m o d p ) n (modp),2n (modp)...(p-1)n(modp) n(modp),2n(modp)...(p1)n(modp)就是一个 1 , 2 , 3 , 4 , 5 , 6.... p − 1 1,2,3,4,5,6....p-1 1,2,3,4,5,6....p1的排列
所以 n ∗ ( 2 n ) ∗ . . . . . ∗ ( p − 1 ) n n*(2n)*.....*(p-1)n n(2n).....(p1)n在模p的意义下就是 ( p − 1 ) ! (p-1)! (p1)!
所以 ( p − 1 ) ! n p − 1 ≡ ( p − 1 ) ! ( m o d p ) (p-1)!n^{p-1}\equiv (p-1)!\pmod {p} (p1)!np1(p1)!(modp)

##费马大定理
对于任意一个n>2,对所有正整数a,b,c,n有
a n + b n ≠ c n a^n+b^n≠c^n an+bn=cn
证明:没有

下面两个由于内容有点多,于是我想偷懒
#欧拉函数
欧拉定理: n ϕ ( m ) ≡ 1 ( m o d m ) n^{\phi{(m)}}\equiv 1\pmod {m} nϕ(m)1(modm) 证明

其他的定理: ∑ d ∣ m ϕ ( d ) = m \sum_{d|m}\phi{(d)}=m dmϕ(d)=m
这个的证明你可以吧m为分母所有的分数都列出来,然后化简分组
发现12的每一个因子都出现在分母上,一起出现的还有 ϕ ( d ) \phi(d) ϕ(d)个分子

#莫比乌斯函数
反演原理:略
递推式:略

#扩展欧拉定理

这里写图片描述
但其实我觉得第一种情况是可以并到第三种里面去的
因为当a,p互质的时候,根据费马小定理,你加上那个 ϕ ( p ) \phi{(p)} ϕ(p)是没有任何影响的
资料来源
我来说一下他里面的引理:
这里写图片描述
由第一个式子可得 ( x − y ) ∣ m 1 (x-y)|m1 (xy)m1
由第二个式子可得 ( x − y ) ∣ m 2 (x-y)|m2 (xy)m2
所以 ( x − y ) ∣ l c m ( m 1 , m 2 ) (x-y)|lcm(m1,m2) (xy)lcm(m1,m2)
知道了推论下面的就很简单了

这里写图片描述
这个的话,我的方法比较玄学
我们可以吧前面的函数值写出来,其实是 p q − p q − 1 p^q-p^{q-1} pqpq1
化简可得 p q − 1 ∗ ( p − 1 ) p^{q-1}*(p-1) pq1(p1)
由于p是大于1的正整数,p为素数,那么 p q − 1 p^{q-1} pq1最少就是2,后者的两倍也最少大2,显然比q要大

后面如果你可以牢记这两个推论,下面的路就好走了
盗图:
这里写图片描述

例题:相逢是问候

#10.24上午
做了很久的相逢是问候
然后求去学扩展Lucas了
感觉效率很低

##Lucas定理
当p是质数的时候,在模p的意义下
我不想写markdown了

C(n,m)=C(n%p,m%p)*C(n/p,m/p)

证明:没有
感觉这个还是蛮实用的

##扩展Lucas
这个的话,不需要p是质数,但是复杂度与p最大的质数的幂有关
学习资料
这里讲得特别好
例题
板子:

#include<cstdio>
#include<cstring>
typedef long long LL;
LL w[10];
LL n,m;
LL MOD;
LL need;//需要多少
LL pow (LL x,LL y,LL mod)
{
	if (y==0) return 1;
	if (y==1) return x;
	LL z=pow(x,y>>1,mod);
	z=z*z%mod;
	if (y&1) z=z*x%mod;
	return z;
}
LL mul (LL n,LL pi,LL pk)
{
	if (n==0) return 1;
	LL ans=1LL;
	for (int u=2;u<=pk;u++)
		if (u%pi!=0)
			ans=ans*u%pk;
	ans=pow(ans,n/pk,pk);
	for (int u=2;u<=n%pk;u++)
		if (u%pi!=0)
			ans=ans*u%pk;
	return ans*mul(n/pi,pi,pk)%pk;
}
void exgcd (LL a,LL b,LL &x,LL &y)
{
	if (a==0)
	{
		x=0;y=1;
		return ;
	}
	LL tx,ty;
	exgcd(b%a,a,tx,ty);
	x=ty-(b/a)*tx;
	y=tx;
	return ;
}
LL inv (LL A,LL mod)
{
	if (A==0) return 0;
	LL a=A,b=mod,x,y;
	exgcd(a,b,x,y);
	x=(x%b+b)%b;
	while (x<=0) x+=b;
	return x;
}
LL C (LL n,LL m,LL pi,LL pk)//从n个里面选m个   然后模数是pi的若干次幂,值为pk 
{
	if (m>n) return 0;
	LL a=mul(n,pi,pk),b=mul(m,pi,pk),c=mul(n-m,pi,pk);
	LL k=0,ans;
	for (int u=n;u>=1;u/=pi) k=k+u/pi;
	for (int u=m;u>=1;u/=pi) k=k-u/pi;
	for (int u=(n-m);u>=1;u/=pi) k=k-u/pi;
	ans=a*inv(b,pk)%pk*inv(c,pk)%pk*pow(pi,k,pk)%pk;	
	return ans*(MOD/pk)%MOD*inv(MOD/pk,pk)%MOD;
}
int main()
{
	scanf("%lld",&MOD);
	scanf("%lld%lld",&n,&m);
	for (LL u=1;u<=m;u++) 
	{
		scanf("%lld",&w[u]);
		need+=w[u];
	}
	if (need>n)
	{
		printf("Impossible\n");
		return 0;
	}
	LL shen=1;
	for (int i=1;i<=m;i++)
	{
		LL P=MOD;
		LL now=0;
		for (LL u=2;u*u<=P;u++)
			if (P%u==0)
			{
				LL pk=1LL;
				while (P%u==0)	pk*=u,P/=u;
				now=(now+C(n,w[i],u,pk))%MOD;
			}
		if (P>1) now=(now+C(n,w[i],P,P))%MOD; 
		shen=shen*now;
		n-=w[i];
	}
	printf("%lld\n",shen%MOD);
	return 0;
}

#高次同余方程
BSGS:师姐的博客
感觉这个方法还是有点暴力,居然是根号的。。
由于有点事,具体的东西就不写了,以后再填吧
板子:

LL bsgs (LL a,LL b,LL p)//a^x%p=b
{
	map<LL,LL> mp;
	mp.clear();
	a%=p;b%=p;
	if (a==0&&b==0) return 1;
	if (a==0) return -1;
	LL m=ceil(sqrt(p));
	LL lalal=1%p;
	for (LL u=0;u<m;u++)
	{
		if (mp.count(lalal)==0)
			mp[lalal]=u;
		lalal=lalal*a%p;
	}
	lalal=inv(lalal,p);
	for (LL u=0;u<m;u++)
	{
		if (mp.count(b))
			return u*m+mp[b];
		b=b*lalal%p;
	}
	return -1;
}

#11.19 下午
在NOIP爆炸之后,沉迷了文化课后,我决定又开坑了。。
反正NOIP爆炸都准备退役了是吧,哪不如学点数学到时候没准可以装逼

##线性求逆元
如果你需要求1~n里面所有数关于p的逆元
如果你一个一个求的话,是 O ( n l o g n ) O(nlogn) O(nlogn)
但是这个很显然会有 O ( n ) O(n) O(n)的方法
我们不妨设 k ∗ i + b = p k*i+b=p ki+b=p
把他放进 m o d p mod p modp的意义下
就是 k ∗ i + b ≡ 0 ( m o d p ) k*i+b\equiv 0\pmod p ki+b0(modp)
如果我们把两边都乘上 i − 1 i^{-1} i1, b − 1 b^{-1} b1
你就会得到式子
k ∗ b − 1 + i − 1 = 0 k*b^{-1}+i^{-1}=0 kb1+i1=0
i − 1 = − k ∗ b − 1 i^{-1}=-k*b^{-1} i1=kb1
于是你就可以线性求逆元了
k是什么大家应该都知道吧。。

A[i] = -(p / i) * A[p % i];

##线性求阶乘的逆元
这个也十分简单了啊

inv[i]=inv[i+1]*(i+1)

这个应该很好理解吧。。
这样的话你先预处理出阶乘
然后求出最后一个的逆元
就可以推回去了

##鸽巢原理
也叫抽屉原理。这个大家都会把,我就不写了。。
##扩展鸽巢原理
如果 q 1 , q 2 , q 3 . . . . . q n q_1,q_2,q_3.....q_n q1,q2,q3.....qn是正整数,如果将 q 1 + q 2 + q 3 + q 4 + . . . . q n − n + 1 q_1+q_2+q_3+q_4+....q_n-n+1 q1+q2+q3+q4+....qnn+1个物体放进n个格子里
那么或者第一个格子有至少 q 1 q_1 q1个物体,那么或者第二个格子有至少 q 2 q_2 q2个物体,那么或者第三个格子有至少 q 3 q_3 q3个物体
证明:显然,不写了
##一个由扩展鸽巢原理推出来的结论
你现在有 n 2 + 1 n^2+1 n2+1个正整数组成的一个序列,那么一定存在有一个长度为n+1的递增子序列或者递减子序列
如果我们可以证明出如果没有长度为 n + 1 n+1 n+1的递增子序列,那么肯定存在有长度为 n + 1 n+1 n+1的递减子序列,那么结论就成立了
证明:
如果不存在一个n+1的递增子序列
我们设以i开头的递增子序列最长长度为 m i m_i mi
那么 m m m的取值范围就是 1 到 n 1到n 1n
于是可以得到,有 n + 1 n+1 n+1 m m m是一样的
稍微想一下就知道,这 n + 1 n+1 n+1个肯定是递减的
然后就没有了

##一些小定义吧
伽马函数=(n-1)!
证明(我也没看)
上升阶乘幂 x n x^n xn(n的上面有一条横线)=(x+n-1)!/(x-1)!
下降阶乘幂 x n x^n xn(n的下面有一条横线)=x!/(x-n)!

#11.20~?
##关于二项式系数的研究
###定义
符号 ( n k ) {n \choose k} (kn)就是二项式系数,其实这个东西就和排列组合差不多,其实我感觉基本上就是一样的。但是似乎这个东西,对于n和k取任意实数都是由意义的。。(虽然我不知道意义是什么)
意义就是从n个东西里面选出k个有多少种方案
###基本恒等式
1.
( n k ) = ( n n − k ) {n \choose k}={n \choose n-k} (kn)=(nkn)

( r k ) = r k ( r − 1 k − 1 ) {r \choose k}=\frac{r}{k}{r-1 \choose k-1} (kr)=kr(k1r1)
这个的话你大概推一下式子就出来了

k ( r k ) = r ( r − 1 k − 1 ) k{r \choose k}=r{r-1 \choose k-1} k(kr)=r(k1r1)
这个就是上一个东西的变形而已

( r − k ) ( r k ) = r ( r − 1 k ) (r-k){r \choose k}=r{r-1 \choose k} (rk)(kr)=r(kr1)
证明: ( r − k ) ( r k ) = ( r − k ) ( r r − k ) = r ( r − 1 r − k − 1 ) = r ( r − 1 k ) (r-k){r \choose k}=(r-k){r \choose r-k}=r{r-1 \choose r-k-1}=r{r-1 \choose k} (rk)(kr)=(rk)(rkr)=r(rk1r1)=r(kr1)

( r − 1 k ) = ( r − 1 k ) + ( r − 1 k − 1 ) {r-1 \choose k}={r-1 \choose k}+{r-1 \choose k-1} (kr1)=(kr1)+(k1r1)
这个大家用的应该很多了吧,就是排列组合线性的递推式啊
证明有很多,感性地证明,推导式子的证明都可以。我这里写一个通过上面式子推导的证明:
( r − k ) ( r k ) + k ( r k ) = r ( r − 1 k ) + r ( r − 1 k − 1 ) (r-k){r \choose k}+k{r \choose k}=r{r-1 \choose k}+r{r-1 \choose k-1} (rk)(kr)+k(kr)=r(kr1)+r(k1r1)
左边的很明显等于 r ( r k ) r{r \choose k} r(kr),然后两边同除 r r r就可以了

6.如果你对上面这个递推式大力展开,我们还可以得到另外两个有用的东西
∑ k = 0 n ( r + k k ) = ( r 0 ) + ( r + 1 1 ) + . . . + ( r + n n ) = ( r + n + 1 n ) \sum_{k=0}^{n}{r+k \choose k}={r \choose 0}+{r+1 \choose 1}+...+{r+n \choose n}={r+n+1 \choose n} k=0n(kr+k)=(0r)+(1r+1)+...+(nr+n)=(nr+n+1)
∑ k = 0 n ( k m ) = ( 0 m ) + ( 1 m ) + . . . + ( n m ) = ( n + 1 m + 1 ) \sum_{k=0}^{n}{k \choose m}={0 \choose m}+{1 \choose m}+...+{n \choose m}={n+1 \choose m+1} k=0n(mk)=(m0)+(m1)+...+(mn)=(m+1n+1)

7. ( r m ) ( m k ) = ( r k ) ( r − k m − k ) {r \choose m}{m \choose k}={r \choose k}{r-k \choose m-k} (mr)(km)=(kr)(mkrk)
这个的话,你可以把他化成阶乘相除的形式,然后分子分母同乘 ( r − k ) ! (r-k)! (rk)!
如果你知道了这个, 2 2 2就是他 k = 1 k=1 k=1的一个特殊情况了

然后我自己YY了一道题,大概是这样的

已知r和k
∑ m = k r ( r m ) ( m k ) \sum_{m=k}^{r}{r \choose m}{m \choose k} m=kr(mr)(km)
做法也十分简单,你就用第7个恒等式,然后就可以将 ( r k ) {r\choose k} (kr)这个常数项提出来,剩下的就是一个二项式定理了。具体正确性我还没验证,但应该是对的

#快速傅里叶变化
我也不知道这个算不算数学知识,应该,我感觉,算吧。。
具体看黑书——算导,我就不说了其实是我也不是特别懂原根
先贴一个板子(FFT):
题目就是uoj的多项式乘法了

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<complex>
using namespace std;
const double pi=M_PI;
const int N=1000005;
int n,m;
complex<double> a[N],b[N];
void fft (complex<double> *a,int n,int o)
{
	if (n==1) return ;
	int k=(n>>1);
	complex<double> w=1,wn(cos(2*pi/n),o*sin(2*pi/n)),a0[k],a1[k];
	for (int u=0;u<k;u++)
	{
		int i=u*2;
		a0[u]=a[i];
		a1[u]=a[i+1];
	}
	fft(a0,k,o);fft(a1,k,o);
	for (int u=0;u<k;u++)
	{
		a[u]=a0[u]+w*a1[u];
		a[u+k]=a0[u]-w*a1[u];
		w=w*wn;
	}
}
int main()
{
	scanf("%d%d",&n,&m);
	for (int u=0;u<=n;u++) scanf("%lf",&a[u]);
	for (int u=0;u<=m;u++) scanf("%lf",&b[u]);
	m=m+n;n=1;while (n<=m) n<<=1;
	fft(a,n,1);fft(b,n,1);
	for (int u=0;u<=n;u++) a[u]*=b[u];
	fft(a,n,-1);
	for (int u=0;u<=m;u++)
		printf("%d ",(int)(a[u].real()/n+0.5));
	return 0;
}
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值