tensorRT C++部署实战(yolov5/yolov8/yolov5seg/yolov8seg) tensorRT是NVIDIA推出的用于深度学习模型加速的工具库,将Yolov5/Yolov8与TensorRT结合使用,可以在NVIDIA的GPU上进行高效推理。使用C++中使用TensorRT加载和运行Yolov5/Yolov8模型流程主要分为以下三步,附上代码链接:完整代码:https://download.csdn.net/download/qq_36801705/89633517。
使用opencv-dnn+C++部署onnx肺区分割模型 使用pytorch构建ResUnet网络,收集公开数据制作数据集完成标注,训练ct肺区分割模型,导出onnx文件,并通过C++调用onnx文件实现推理。