bzoj 3530: [Sdoi2014]数数

本文介绍了一种结合数位DP与自动机的方法来解决一类特定字符串匹配问题。通过构造自动机并采用数位DP进行状态转移,该方法能够高效地计算1到n范围内不含特定子串的数的数量。

题意:

求1~n中不含有集合S中的元素为子串,不含前导0。

题解:

一开始傻傻的写了之前的数位dp版本。
换了种打法,f[i][j][k]表示前i位,在自动机j号点上。
k=0为小于n,k=1等于,k=2大于。
然后瞎转移。
code:

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<queue>
#include<algorithm>
#define LL long long
using namespace std;
const int mod=1000000007;
struct trnode{
    int a[11],fail;
    bool tail;
    trnode(){tail=false;}
}tr[2000];int root=1,tot=1;
int f[1210][2000][4];
int m,n,a[1210];
char s[1510];
void build()
{
    int len=strlen(s+1);
    int x=root;
    for(int i=1;i<=len;i++)
    {
        int c=s[i]-'0';
        if(tr[x].a[c]) x=tr[x].a[c];
        else x=tr[x].a[c]=++tot;
    }
    tr[x].tail=true;
}
queue<int> q;
void make_root()
{
    q.push(root);
    while(!q.empty())
    {
        int x=q.front();q.pop();
        for(int i=0;i<=9;i++)
        {
            if(!tr[x].a[i]) continue;
            if(x==root) tr[tr[x].a[i]].fail=root;
            else
            {
                int j=tr[x].fail;
                while(j!=root&&!tr[j].a[i]) j=tr[j].fail;
                tr[tr[x].a[i]].fail=tr[j].a[i];
                tr[tr[x].a[i]].tail|=tr[tr[j].a[i]].tail;
            }
            q.push(tr[x].a[i]);
        }
    }
}
int qs(int k,int x)
{
    if(k==x) return 1;
    if(k<x) return 0;
    return 2;
}
int main()
{
    scanf("%s",s+1);
    n=strlen(s+1);
    for(int i=1;i<=n;i++) a[i]=s[i]-'0';
    scanf("%d",&m);
    for(int i=0;i<=9;i++) tr[root].a[i]=++tot;
    for(int i=1;i<=m;i++)
    {
        scanf("%s",s+1);
        build();
    }
    make_root();
    f[0][root][1]=1;
    for(int i=0;i<n;i++)
        for(int x=1;x<=tot;x++)
            for(int K=0;K<3;K++)
            {
                if(tr[x].tail||f[i][x][K]==0) continue;
                for(int c=0;c<=9;c++)
                {
                    if(x==root&&c==0) continue;
                    int k=x;
                    while(!tr[k].a[c]) k=tr[k].fail;
                    if(!tr[tr[k].a[c]].tail)
                    {
                        if(K!=1) (f[i+1][tr[k].a[c]][K]+=f[i][x][K])%=mod;
                        else (f[i+1][tr[k].a[c]][qs(c,a[i+1])]+=f[i][x][K])%=mod;
                    }
                }
            }
    int ans=0;
    for(int i=1;i<=n;i++)
        for(int j=2;j<=tot;j++)
            for(int k=0;k<=2;k++)
                if(k<=1||i!=n) (ans+=f[i][j][k])%=mod;
    printf("%d",ans);
}
六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,详细介绍了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程的理论与Matlab代码实现过程。文档还涵盖了PINN物理信息神经网络在微分方程求解、主动噪声控制、天线分析、电动汽车调度、储能优化等多个工程与科研领域的应用案例,并提供了丰富的Matlab/Simulink仿真资源和技术支持方向,体现了其在多学科交叉仿真与优化中的综合性价值。; 适合人群:具备一定Matlab编程基础,从事机器人控制、自动化、智能制造、电力系统或相关工程领域研究的科研人员、研究生及工程师。; 使用场景及目标:①掌握六自由度机械臂的运动学与动力学建模方法;②学习人工神经网络在复杂非线性系统控制中的应用;③借助Matlab实现动力学方程推导与仿真验证;④拓展至路径规划、优化调度、信号处理等相关课题的研究与复现。; 阅读建议:建议按目录顺序系统学习,重点关注机械臂建模与神经网络控制部分的代码实现,结合提供的网盘资源进行实践操作,并参考文中列举的优化算法与仿真方法拓展自身研究思路。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值