使用场景:
当需要大量判断某些区间的某一性质时使用。比如找出数组nums中满足某一性质的区间的个数,比如找出数组中最长的满足某一性质的区间,这些区间有O()个,这时就要想到用前缀和。例如求一个长度为n的序列的区间[j+1, i]的某一性质时,通过pre[i]-pre[j]可以以O(1)的时间复杂度判断这个区间是否具有这一性质。显然,这里的pre[i]-pre[j]也是狭义的。广义上来讲,凡是以pre[i]和pre[j]为参数,以O(1)时间复杂度得出判断结果的函数都可以。
题目举例
LeetCode 560题:
题目:给定一个整数数组和一个整数 k,你需要找到该数组中和为 k 的连续的子数组的个数。
分析:数组nums的区间[j, i]间的和为k,等价于数组nums的前缀和prefixsum[i] - prefixsum[j - 1] = k,即prefixsum[i] - k = prefixsum[j - 1],也就是说数组nums在i处的前缀和减去k的值在[0,j]间有个j的前缀和与之相等,则[j,i]间的和为k。
int subarraySum(vector<int>& nums, int k) {
unordered_map<int, int> sum;
int count = 0;
int pre = 0;
sum[0] = 1;
for (auto c : nums) {
pre += c;
if (sum.find(pre - k) != sum.end()) {
count += sum[pre - k];
}
// 用 []访问,key不存在时,C++会利用该key及默认构造的value,组成{key,value}对,插入到map中。
// 存在则加一,不存在则创建后赋值为1
sum[pre]++;
}
return count;
}
1326

被折叠的 条评论
为什么被折叠?



