一、pip 与 pip3 的关系
在现代 Python 环境中:
pip是 Python 官方推荐的包管理工具。pip3通常表示 “Python 3 对应的 pip 命令”。
在 Linux / macOS 下,系统可能同时存在 Python2 与 Python3:
python→ Python2python3→ Python3pip→ pip for Python2pip3→ pip for Python3
在 Python3 独立环境(如 Anaconda 或 venv)中,pip 与 pip3 通常等价。
二、pip3 安装与更新
1.安装 pip3
在多数系统中,Python3 自带 pip3,如果没有:
# Ubuntu / Debian
sudo apt install python3-pip
# macOS (使用 Homebrew)
brew install python3
# Windows(Python 官方安装包一般自带 pip3)
python -m ensurepip --upgrade
2. 升级 pip3
python3 -m pip install --upgrade pip
验证版本:
pip3 --version
三、pip3 基本命令大全
| 命令 | 功能说明 | 示例 |
|---|---|---|
pip3 install <包名> | 安装包 | pip3 install numpy |
pip3 install <包名>==版本号 | 指定版本安装 | pip3 install torch==2.1.0 |
pip3 install <包名> -U | 升级已有包 | pip3 install -U requests |
pip3 uninstall <包名> | 卸载包 | pip3 uninstall numpy |
pip3 list | 查看已安装包 | pip3 list |
pip3 freeze | 导出精确版本号的包列表 | pip3 freeze > requirements.txt |
pip3 show <包名> | 查看包信息(路径、版本、依赖等) | pip3 show pandas |
pip3 search <关键字> | 搜索包(新版本可能被 PyPI 禁止) | pip3 search opencv |
pip3 check | 检查依赖冲突 | pip3 check |
pip3 install -r requirements.txt | 按依赖文件批量安装 | pip3 install -r requirements.txt |
四、pip3 安装源与国内镜像加速
默认 PyPI 下载速度较慢,可使用国内镜像源加速。
1. 临时使用镜像源
pip3 install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple
2. 永久修改镜像源(推荐)
配置文件路径:
- Linux/macOS:
~/.pip/pip.conf - Windows:
%APPDATA%\pip\pip.ini
写入以下内容:
[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
常用国内源:
| 镜像源 | 地址 |
|---|---|
| 清华大学 | https://pypi.tuna.tsinghua.edu.cn/simple |
| 阿里云 | https://mirrors.aliyun.com/pypi/simple |
| 豆瓣 | https://pypi.douban.com/simple |
| 中国科技大学 | https://pypi.mirrors.ustc.edu.cn/simple |
五、pip3 高级用法与技巧
1. 安装指定路径/离线包
pip3 install ./package.whl
pip3 install some_package.tar.gz
或从本地目录安装:
pip3 install .
2. 安装 Git 仓库源码
pip3 install git+https://github.com/psf/requests.git
3. 升级所有包(慎用)
pip3 list --outdated --format=freeze | \
grep -v '^\-e' | cut -d = -f 1 | \
xargs -n1 pip3 install -U
4. 检查依赖树(需额外安装 pipdeptree)
pip3 install pipdeptree
pipdeptree
5. 查看包的安装路径
python3 -m site
pip3 show numpy | grep Location
六、虚拟环境配合使用(推荐)
配合 venv 或 virtualenv 管理依赖环境:
# 创建虚拟环境
python3 -m venv venv
# 激活环境
source venv/bin/activate # Linux/macOS
venv\Scripts\activate # Windows
# 使用 pip3 安装包
pip install numpy
# 退出环境
deactivate
七、常见问题解决
| 问题 | 原因 | 解决方案 |
|---|---|---|
pip3 command not found | 未安装 pip3 | sudo apt install python3-pip |
SSL error | 系统 CA 证书问题 | 更新系统或使用国内源 |
Permission denied | 没有权限安装到全局 | 使用 --user 或虚拟环境 |
Requirement already satisfied | 已安装该包 | 可加 -U 强制更新 |
Could not find a version... | PyPI 源被墙或包名错误 | 检查包名或切换国内源 |
八、与 Python 模块管理相关的实用命令
| 命令 | 功能 |
|---|---|
python3 -m pip install ... | 推荐方式(明确版本) |
pip3 cache dir | 查看缓存路径 |
pip3 cache purge | 清理缓存 |
pip3 config list | 查看当前配置 |
pip3 debug --verbose | 查看环境调试信息 |
九、示例:从项目导出依赖再重装
# 在当前虚拟环境导出依赖
pip3 freeze > requirements.txt
# 在新机器上重新安装
pip3 install -r requirements.txt
十、pip3 与 conda 区别总结
| 特点 | pip3 | conda |
|---|---|---|
| 管理对象 | Python 包 | 各种语言的包与环境 |
| 依赖解决 | 仅 Python 层面 | 更全面(含 C/C++ 库) |
| 环境隔离 | 需配合 venv | 自带环境管理 |
| 适用场景 | 通用 Python 工程 | 科学计算、大型依赖项目 |
30万+

被折叠的 条评论
为什么被折叠?



