
计算机视觉CV
本专栏以计算机视觉为主,内容包括不限于机器学习、深度学习基础、图像分类、目标检测、语义分割、OCR(注意不包括OCR实战和深入浅出OCR系列!!)、GNN、迁移学习等方向,会总结实战项目与面试题,限时半价优惠,内容长期更新,后期会调整价格!
GoAI
CSDN人工智能领域博客专家、新星计划计算机视觉方向导师、内容合伙人。阿里云社区专家博主、百度飞桨PPDE、飞桨校领航团团长、开源特训营导师,大数据专业硕士在读,长期专注大数据与人工智能知识分享,相关合作和交流可私信。
展开
-
计算机视觉最全专栏教程总结
为方便更多CV方向学习者学习,本次新星计划活动学习内容不仅包括为本人博客专栏,还会涉及部分知识星球:CV技术指南内容 ,星球文章内容成专栏体系 ,会分享最新论文+ 部署实战+ 资源教程共享,方向很多,包括不限于2D/3D、缺陷检测、分割、Diffusion Model、AIGC、Transformer、点云、遥感图像、量化剪枝蒸馏、REID、医学图像、目标跟踪、车道线、行为、图神经网络、GAN等。原创 2023-03-31 17:26:00 · 9853 阅读 · 29 评论 -
计算机视觉方向面试题总结(三):OCR篇
《计算机视觉面试题总结系列》 主要面向计算机视觉目标检测、图像分割及OCR等领域,将对该领域面试相关问题等进行总结,主要进行资源整合!学习对象主要面向深度学习CV方向同学,本篇主要对OCR方向进行全面总结,希望大家能够多多交流如有错误请大家在评论区指正,如有侵权联系删除。原创 2023-04-28 14:36:51 · 5311 阅读 · 11 评论 -
计算机视觉方向面试题总结(二):图像分割篇
《计算机视觉面试题总结系列》 主要面向计算机视觉目标检测、图像分割及OCR等领域,将对该领域面试相关问题等进行总结,主要进行资源整合!学习对象主要面向深度学习CV方向同学,本篇主要对图像分割方向进行全面总结,希望大家能够多多交流如有错误请大家在评论区指正,如有侵权联系删除。原创 2023-04-30 16:39:31 · 4420 阅读 · 6 评论 -
计算机视觉方向面试题总结(一):目标检测篇
《计算机视觉面试题总结系列》:主要面向计算机视觉目标检测、图像分割及OCR等领域,将对该领域面试相关问题等进行总结,主要进行资源整合!学习对象主要面向深度学习CV方向同学,本篇主要对目标检测方向进行全面总结,希望大家能够多多交流如有错误请大家在评论区指正,如有侵权联系删除。原创 2023-04-23 21:45:06 · 6569 阅读 · 7 评论 -
计算机视觉竞赛技巧总结(三):OCR篇
本篇主要介绍OCR竞赛技巧总结,主要从OCR概念、分类、模型方法、推荐框架、常用trick、评估指标等多个方面进行总结介绍,部分内容取自本人专栏《深入浅出OCR》系列,上述内容后续会继续更新,欢迎大家订阅学习交流,感谢批评指正!原创 2023-04-12 11:39:36 · 9638 阅读 · 14 评论 -
计算机视觉竞赛技巧总结(二):图像分割基础篇
本系列主要面向计算机视觉目标检测、图像分割及OCR等领域进行竞赛总结,本文为第二篇,主要介绍图像分割领域知识,分别从概述、开源框架、模型选择、常用Tricks等方面展开介绍,主要面向深度学习CV方向同学学习,希望大家能够多多交流,欢迎订阅本专栏,如有错误请大家在评论区指正,如有侵权联系删除。原创 2023-03-25 10:05:39 · 6396 阅读 · 9 评论 -
计算机视觉竞赛技巧总结(一):目标检测篇
本系列主要面向计算机视觉目标检测、图像分割及OCR等领域,每章将分别从最新方法、开源框架、数据、模型、常用Tricks等方面展开介绍,主要面向深度学习CV方向同学学习,希望大家能够多多交流,欢迎订阅本专栏,如有错误请大家在评论区指正,如有侵权联系删除。原创 2023-03-16 16:34:46 · 8383 阅读 · 16 评论 -
计算机视觉论文总结系列(二):图像分割篇
本系列主要面向计算机视觉目标检测、图像分割及OCR等领域论文总结,每章将分别从最新方法、开源框架、模型、等方面展开介绍,主要面向深度学习CV方向同学学习,希望大家能够多多交流,欢迎订阅本专栏,如有错误请大家在评论区指正,如有侵权联系删除。原创 2023-03-29 10:58:51 · 5182 阅读 · 19 评论 -
计算机视觉论文总结系列(一):目标检测篇
本系列主要面向计算机视觉目标检测、图像分割及OCR等领域,每篇将对该领域论文等方面展开介绍,本篇主要介绍目标检测领域历年论文,希望大家能够多多交流如有错误请大家在评论区指正,如有侵权联系删除原创 2023-03-23 09:28:10 · 7663 阅读 · 6 评论 -
计算机视觉最全方向专栏教程总结
为方便更多CV方向学习者学习,本次 新星计划活动学习内容不仅包括为本人 博客专栏 ,还会涉及部分 知识星球:CV技术指南 ,星球文章内容成专栏体系 ,会分享最新论文+ 部署实战+ 资源教程共享,方向很多,包括不限于2D/3D、缺陷检测、分割、Diffusion Model、AIGC、Transformer、点云、遥感图像、量化剪枝蒸馏、REID、医学图像、目标跟踪、车道线、行为、图神经网络、GAN等。原创 2023-04-06 14:33:34 · 529 阅读 · 4 评论 -
注意力机制详解系列(一):注意力机制概述
本系列主要介绍计算机视觉领域的注意力机制方法,分为注意力机制概述、通道注意力,空间注意力,混合域注意力和时域注意力、注意力机制总结等不同分类展开介绍,后续系列会对上述各种注意力机制方法进行重点讲解,重点论文会配上论文和对应代码,并简要解释,如有错误请大家在评论区指正,如有侵权联系删除。原创 2023-02-24 18:22:35 · 10937 阅读 · 51 评论 -
注意力机制详解系列(二):通道注意力机制
本篇主要介绍注意力机制中的通道注意力机制,对通道注意力机制方法进行详细讲解,通道注意力机制在计算机视觉中,更关注特征图中channel之间的关系,重点对SENet、ECANe进行重点讲解。原创 2023-02-26 09:30:00 · 9744 阅读 · 37 评论 -
注意力机制详解系列(三):空间注意力机制
本篇为注意力机制系列第三篇,主要介绍注意力机制中的空间注意力机制,着重详解DCN、Non-local、ViT、DETR等模型,下一篇将对混合注意力机制和时域注意力机制进行讲解。原创 2023-02-28 09:06:26 · 11108 阅读 · 35 评论 -
注意力机制详解系列(四):混合注意力机制
混合注意力是机制基于通道注意力和空间注意力机制,将两者有效的结合在一起,让注意力能关注到两者,又称混合注意力机制,如CBAM,BAM,scSE等,同时基于混合注意力机制的一些关注点,如关注各种跨维度的相互作用;关注长距离的依赖;RGA关注关系感知注意力。原创 2023-03-01 19:52:35 · 6430 阅读 · 5 评论 -
注意力机制详解系列(五):分支与时间注意力机制
branch注意力机制主要是关注哪个图片的意思,如一个branch中对不同图片以不同的权重,如CondConv,Dynamic Conv 等;或者在多个branch中,对不同的branch不同的权重,如Highway Network,SKNet, ResNeSt等。原创 2023-03-03 12:24:24 · 5448 阅读 · 9 评论 -
计算机视觉框架OpenMMLab(一):计算机视觉基础
前言:本系列主要对OpenMMlab开源框架进行学习,文章分为计算机视觉基础、图像分类、图像检测、图像分割等,适合人工智能领域入门及爱好者学习,可以快速了解OpenMMlab框架,为后续实战学习打下基础。大致可以分为这么几类:图像识别、目标检测、图像分割、图像增强、图像生成、视觉感知、人脸分类识别、姿态估计、立体视觉等。原创 2023-02-02 16:28:16 · 4561 阅读 · 54 评论 -
计算机视觉框架OpenMMLab(二):图像分类基础
本次主要复习深度学习图像分类知识,学习图像分类最新的模型,计算机视觉框架OpenMMLab的MMClassification工具基本使用,为后续实战做铺垫。原创 2023-02-03 19:09:39 · 3519 阅读 · 50 评论 -
计算机视觉框架OpenMMLab(三):图像分类实战
本篇主要偏向图像分类实战部分,使用MMclassification工具进行代码应用,熟悉其框架应用,为后续处理不同场景下分类问题提供帮助。原创 2023-02-04 19:33:22 · 3359 阅读 · 7 评论 -
计算机视觉框架OpenMMLab(四):目标检测基础
本系列第四篇文章主要介绍目标检测知识,介绍单阶段与双阶段算法发展,并学习目标检测模型,了解计算机视觉框架OpenMMLab的MMDetection工具基本原理及使用,为后续目标检测实战做铺垫。原创 2023-02-07 16:32:47 · 2666 阅读 · 7 评论 -
计算机视觉框架OpenMMLab开源学习(五):目标检测实战
本篇主要偏向目标检测实战部分,使用MMDetection工具进行代码应用,最后对水果进行检测实战演示,原创 2023-02-10 19:46:17 · 1850 阅读 · 11 评论 -
计算机视觉框架OpenMMLab(六):语义分割基础
本系列第六篇文章主要介绍语义分割知识,了解计算机视觉框架OpenMMLab的MMSegmentation工具基本原理及使用,为后续语义分割实战做铺垫。原创 2023-02-10 23:37:28 · 1223 阅读 · 11 评论 -
计算机视觉框架OpenMMLab(七):语义分割实战
本文主要对OpenMMlab开源框架的图像分割方向进行学习,适合人工智能领域入门及爱好者学习,本篇介绍快速了解 MMSegmentation框架,为后续实战学习打下基础。原创 2023-02-12 19:39:18 · 872 阅读 · 44 评论 -
Intel带你初识视觉识别--OpenVINO
本文内容为英特尔计算机视觉课程,介绍OpenVINO工具,课程分为初中高级,初级课程从AI的基本概念开始,介绍人工智能与视觉应用的相关知识及应用场景。整个课程包含了视频的处理,深度学习的相关知识,人工智能应用的推理加速,以及英特尔OpenVINO工具套件的Demo演示。本课程适合了解计算机视觉应用的核心概念和开发工具套件的学员。...原创 2022-07-28 08:13:57 · 862 阅读 · 0 评论 -
OpenCV笔记总结 (上)
本系列主要介绍计算机视觉图像处理方向,分为上中下三部分文章,本篇主要详解OpenCV基础方向知识及操作,参考开源资料对OpenCV进行总结,后续将继续更新,适合CV方向同学学习。原创 2022-03-28 21:13:59 · 7274 阅读 · 1 评论 -
Transformer模型详解
本文主要介绍Transformer系列,从基础到理论,对注意力机制进行总结并解释《Attention is all you need》,提出解决sequence to sequence问题的transformer模型,用全attention的结构代替了lstm,抛弃了之前传统的encoder-decoder模型必须结合cnn或者rnn的固有模式,只用attention。文章的主要目的是在减少计算量和提高并行效率的同时不损害最终的实验结果。原创 2022-02-28 11:15:41 · 3581 阅读 · 0 评论 -
Attention注意力机制总结
本文主要参考开源资料对Attention注意力机制进行总结,注意力机制本质上与人类对外界事物的观察机制相似。以下是相关学习资料推荐:深度学习中的注意力机制_CSDN大数据-CSDN博客目前主流的attention方法都有哪些? - 知乎...原创 2022-02-12 16:10:26 · 19653 阅读 · 2 评论 -
CNN经典网络理论与实战总结
本文为深度学习网络模型知识总结 ,总结常见网络模型概念及实战,并包含相关领域论文,可供深度学习者学习。1.LeNet-5神经元个数=卷积核数量X输出特征图宽度X输出特征图高度卷积层可训练参数数量=卷积核数量X(卷积核宽度X卷积核高度+1)(1表示偏置)汇聚层可训练参数数量=卷积核数量X(1+1)(两个1分别表示相加后的系数和偏置,有的汇聚层无参数)连接数=卷积核数量X(卷积核宽度X卷积核高度+1)X输出特征图宽度X输出特征图高度(1表示偏置)全连接层连接数=卷积核数量X(输原创 2022-02-18 15:16:38 · 6639 阅读 · 1 评论 -
论文笔记系列:经典主干网络(一)-- VGG
本论文系列主要介绍深度学习主干网络,本篇介绍经典网络VGG,包括网络结构介绍、特点及对应论文讲解,VGG可以看成是加深版本的AlexNet。后续会在此基础上更新其他部分网络,仅供个人学习参考!原创 2022-10-23 21:49:12 · 2589 阅读 · 15 评论 -
论文笔记系列:经典主干网络(二)-- ResNet
ResNet 网络是在 2015年 由微软实验室中的何凯明等几位大神提出,斩获当年ImageNet竞赛中分类任务第一名,目标检测第一名。获得COCO数据集中目标检测第一名,图像分割第一名。对应的论文是 2016 CVPR 最佳论文。① 提出问题:深度卷积网络难训练。② 本文方法:残差学习框架可以让深层网络更容易训练③ 本文优点:ResNet易优化,并随着层数增加精度也能提升④ 本文的工作和成果。原创 2022-10-24 23:21:47 · 959 阅读 · 2 评论 -
论文笔记系列:轻量级网络(一)-- RepVGG
RepVGG是一种简单的VGG式结构,大量使用3x3卷积,BN层,Relu激活函数,利用重参数化提升性能,准确率直逼其他SOTA网络,特点是训练时使用多分支网络,推理时融合多分支为单分支。主要为了解决原始VGG网络模型较大,不便于部署以及性能较差提出的一个VGG升级版本。RepVGG主要思路(1)在VGG网络的Block块中加入了Identity和残差分支,相当于把ResNet网络中的精华应用 到VGG网络中;原创 2022-10-22 10:00:00 · 1644 阅读 · 3 评论 -
论文笔记系列:经典主干网络(二)-- DenseNet
背景介绍:近年卷积神经网络中加入捷径连接之后,可训练更深、精度更高、更高效的网络研究内容:本文提出DenseNet,其中的每一层会作为其后一层的输入层。对于L层的网络,传统方法有L层连接,而DenseNet有L×(L+1)/2个连接,所以叫DenseNet本文优点:减轻梯度消失,增强特征传播,加强特征复用,减少权重参数实验结果:各项指标超越ResNet开源代码将捷径连接与特征复用思想结合,同时借鉴级联结构的思想,设计出稠密连接结构。原创 2022-10-04 10:00:00 · 1960 阅读 · 15 评论 -
OCR入门教程系列(五):OCR实战代码解析
OCR文本识别实战📝导读:在上一篇文章中我们对文字识别算法理论部分进行详细总结,本篇将继续介绍文字识别CRNN网络实战部分,下面将从CRNN实践代码出发进一步说明文字识别实战流程。本系列目录:1️⃣OCR系列第一章:OCR文字识别技术总结(一)2️⃣OCR系列第二章:OCR文字识别技术总结(二)3️⃣OCR系列第三章:OCR文字识别技术总结(三)4️⃣OCR系列第四章:OCR文字识别技术总结(四)5️⃣OCR系列第五章:OCR文字识别技术总结(五)......原创 2022-04-13 11:10:14 · 13692 阅读 · 1 评论 -
OCR入门教程系列(四):文字识别技术总结
导读:在上一篇文章中我们对文字检测各类算法进行总结,本篇将继续介绍OCR领域文字识别理论部分的研究,将从规则文本及不规则文本的文字识别进行展开,主要介绍主流文字识别相关算法。原创 2022-04-09 11:23:10 · 12884 阅读 · 4 评论 -
OCR入门教程系列(三):文字检测技术总结
📝导读:在本系列前两章内容中,主要介绍OCR的概念、发展及主流OCR技术介绍,本章将继续介绍深度学习在OCR方法的应用。首先回顾第一章的内容,文中提到OCR识别过程,大部分识别流程包括文字检测和文字识别部分,本章将对文字检测部分进行详细阐述。本系列目录:1️⃣OCR系列第一章:OCR文字识别技术总结(一)2️⃣OCR系列第二章:OCR文字识别技术总结(二)3️⃣OCR系列第三章:OCR文字识别技术总结(三)一、OCR文字识别方法发展二、文本检测概念介绍...原创 2022-04-06 09:45:01 · 11268 阅读 · 1 评论 -
OCR入门教程系列(二):OCR技术发展
导读:本文为本系列第二章,在上一章中,我们对OCR的概念、发展历程等做了详细解读,并介绍了几种OCR识别方法,本章将继续针对OCR文字识别进行详细讨论,通过不同的OCR分类识别数据集进一步介绍常用的几种OCR算法,对比传统OCR与深度学习OCR。首先是传统OCR识别方法,下面内容将从我国OCR研究历程开始展开。这篇文章将对OCR技术进行分类描述,我国OCR发展过程:我国的印刷体汉字识别研究是从上世纪70年代末起步的,至今己有近三十年的发展历...原创 2022-04-03 23:31:27 · 20582 阅读 · 0 评论 -
OCR入门教程系列(一):OCR基础导论
📝导读:本系列主要介绍计算机视觉领域OCR文字识别领域技术发展方向,面向深度学习同学,内容总计五章,每章将从OCR技术发展、概念、方法等各种角度展开详细介绍。第一篇介绍OCR概念及发展以及相关数据集,其次列出几种常见的OCR文本检测与文本识别技术,文章最后分享几种开源的OCR平台,后续系列文章将继续介绍OCR相关技术及实战演练。原创 2022-04-01 21:38:27 · 64232 阅读 · 62 评论 -
OCR论文笔记系列(二): ASTER文字识别
本文主要主要介绍文字识别经典论文ASTER,其主要解决不规则排列文字的文字识别问题,论文为之前CVPR206的paper(Robust Scene Text Recognition with Automatic Rectification,方法简称为RARE)的改进版。1. 主要思路针对不规则文字,先矫正成正常线性排列的文字,再识别; 整合矫正网络和识别网络成为一个端到端网络来训练; 矫正网络使用STN,识别网络用经典的sequence to sequence + attention......原创 2022-02-19 10:30:26 · 4618 阅读 · 1 评论 -
OCR论文笔记系列(一): CRNN文字识别
本文主要介绍OCR领域经典深度学习方法CRNN+CTC,CRNN是一种卷积循环神经网络结构,用于解决基于图像的序列识别问题,特别是场景文字识别问题。CRNN网络结构包含三部分,从下到上依次为:1. 卷积层。作用是从输入图像中提取特征序列。2. 循环层。......原创 2021-12-08 14:45:47 · 24559 阅读 · 0 评论 -
OCR文字识别方法综述
摘 要:文字识别可以把海量非结构化数据转换为结构化数据,从而支撑各种创新的人工智能应用,是计算机视觉研究领域的分支之一,其任务是识别出图像中的文字内容,一般输入来自于文本检测得到的文本框截取出的图像文字区域。近几年来,基于深度学习的文字识别算法模型已取得不错成果,其过程无需进行特征处理且可以实现复杂场景文字识别,效果要优于传统文字识别方法,逐渐成为文字识别研究应用的主流方式。本文将主要介绍基于深度学习的文字识别技术综述,分类总结主流文字识别经典算法,讨论未来文字识别领域发展与研究趋势。关键词:OCR...原创 2022-07-05 11:59:47 · 9145 阅读 · 6 评论 -
OCR文字识别领域经典论文总结
本篇将介绍文字识别经典论文,内容包括文字检测、文字识别、端到端识别等方法,具体将分别对论文算法简介、思路、代码等几个部分展开介绍。目前各部分只举例经典论文,算法没有全部写完,后续会将在此部分基础上更新更多论文综述及代码实战部分。.................................原创 2022-06-05 09:01:46 · 13087 阅读 · 4 评论