1、常用设计模式
单例模式:懒汉式、饿汉式、双重校验锁、静态加载,内部类加载、枚举类加载。保证一个类仅有一个实例,并提供一个访问它的全局访问点。
单例模式是一种常用的软件设计模式,其定义是单例对象的类只能允许一个实例存在;一般介绍单例模式的书籍都会提到 饿汉式
和 懒汉式
这两种实现方式。但是除了这两种方式,本文还会介绍其他几种实现单例的方式;
基本的实现思路
单例模式要求类能够有返回对象一个引用(永远是同一个)和一个获得该实例的方法(必须是静态方法,通常使用getInstance这个名称)。
单例的实现主要是通过以下两个步骤:
- 将该类的构造方法定义为私有方法,这样其他处的代码就无法通过调用该类的构造方法来实例化该类的对象,只有通过该类提供的静态方法来得到该类的唯一实例;
- 在该类内提供一个静态方法,当我们调用这个方法时,如果类持有的引用不为空就返回这个引用,如果类保持的引用为空就创建该类的实例并将实例的引用赋予该类保持的引用。
注意事项
单例模式在多线程的应用场合下必须小心使用。如果当唯一实例尚未创建时,有两个线程同时调用创建方法,那么它们同时没有检测到唯一实例的存在,从而同时各自创建了一个实例,这样就有两个实例被构造出来,从而违反了单例模式中实例唯一的原则。 解决这个问题的办法是为指示类是否已经实例化的变量提供一个互斥锁(虽然这样会降低效率)。
代理模式:动态代理和静态代理,什么时候使用动态代理。
适配器模式:将一个类的接口转换成客户希望的另外一个接口。适配器模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。
单例模式的八种写法
1、饿汉式(静态常量)[可用]
public class Singleton {
private final static Singleton INSTANCE = new Singleton();
private Singleton(){}
public static Singleton getInstance(){
return INSTANCE;
}
}
优点:这种写法比较简单,就是在类装载的时候就完成实例化。避免了线程同步问题。
缺点:在类装载的时候就完成实例化,没有达到Lazy Loading的效果。如果从始至终从未使用过这个实例,则会造成内存的浪费。
2、饿汉式(静态代码块)[可用]
public class Singleton {
private static Singleton instance;
static {
instance = new Singleton();
}
private Singleton() {}
public static Singleton getInstance() {
return instance;
}
}
这种方式和上面的方式其实类似,只不过将类实例化的过程放在了静态代码块中,也是在类装载的时候,就执行静态代码块中的代码,初始化类的实例。优缺点和上面是一样的。
3、懒汉式(线程不安全)[不可用]
public class Singleton {
private static Singleton singleton;
private Singleton() {}
public static Singleton getInstance() {
if (singleton == null) {
singleton = new Singleton();
}
return singleton;
}
}
这种写法起到了Lazy Loading的效果,但是只能在单线程下使用。如果在多线程下,一个线程进入了if (singleton == null)判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例。所以在多线程环境下不可使用这种方式。
4、懒汉式(线程安全,同步方法)[不推荐用]
public class Singleton {
private static Singleton singleton;
private Singleton() {}
public static synchronized Singleton getInstance() {
if (singleton == null) {
singleton = new Singleton();
}
return singleton;
}
}
解决上面第三种实现方式的线程不安全问题,做个线程同步就可以了,于是就对getInstance()方法进行了线程同步。
缺点:效率太低了,每个线程在想获得类的实例时候,执行getInstance()方法都要进行同步。而其实这个方法只执行一次实例化代码就够了,后面的想获得该类实例,直接return就行了。方法进行同步效率太低要改进。
5、懒汉式(线程安全,同步代码块)[不可用]
public class Singleton {
private static Singleton singleton;
private Singleton() {}
public static Singleton getInstance() {
if (singleton == null) {
synchronized (Singleton.class) {
singleton = new Singleton();
}
}
return singleton;
}
}
由于第四种实现方式同步效率太低,所以摒弃同步方法,改为同步产生实例化的的代码块。但是这种同步并不能起到线程同步的作用。跟第3种实现方式遇到的情形一致,假如一个线程进入了if (singleton == null)判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例。
6、双重检查[推荐用]
public class Singleton {
private static volatile Singleton singleton;
private Singleton() {}
public static Singleton getInstance() {
if (singleton == null) {
synchronized (Singleton.class) {
if (singleton == null) {
singleton = new Singleton();
}
}
}
return singleton;
}
}
Double-Check概念对于多线程开发者来说不会陌生,如代码中所示,我们进行了两次if (singleton == null)检查,这样就可以保证线程安全了。这样,实例化代码只用执行一次,后面再次访问时,判断if (singleton == null),直接return实例化对象。
优点:线程安全;延迟加载;效率较高。
7、静态内部类[推荐用]
public class Singleton {
private Singleton() {}
private static class SingletonInstance {
private static final Singleton INSTANCE = new Singleton();
}
public static Singleton getInstance() {
return SingletonInstance.INSTANCE;
}
}
这种方式跟饿汉式方式采用的机制类似,但又有不同。两者都是采用了类装载的机制来保证初始化实例时只有一个线程。不同的地方在饿汉式方式是只要Singleton类被装载就会实例化,没有Lazy-Loading的作用,而静态内部类方式在Singleton类被装载时并不会立即实例化,而是在需要实例化时,调用getInstance方法,才会装载SingletonInstance类,从而完成Singleton的实例化。
类的静态属性只会在第一次加载类的时候初始化,所以在这里,JVM帮助我们保证了线程的安全性,在类进行初始化时,别的线程是无法进入的。
优点:避免了线程不安全,延迟加载,效率高。
8、枚举[推荐用]
public enum Singleton {
INSTANCE;
public void whateverMethod() {
}
}
借助JDK1.5中添加的枚举来实现单例模式。不仅能避免多线程同步问题,而且还能防止反序列化重新创建新的对象。可能是因为枚举在JDK1.5中才添加,所以在实际项目开发中,很少见人这么写过。
优点
系统内存中该类只存在一个对象,节省了系统资源,对于一些需要频繁创建销毁的对象,使用单例模式可以提高系统性能。
缺点
当想实例化一个单例类的时候,必须要记住使用相应的获取对象的方法,而不是使用new,可能会给其他开发人员造成困扰,特别是看不到源码的时候。
适用场合
- 需要频繁的进行创建和销毁的对象;
- 创建对象时耗时过多或耗费资源过多,但又经常用到的对象;
- 工具类对象;
- 频繁访问数据库或文件的对象。
装饰者模式:动态给类加功能。
意图: 动态地给一个对象添加一些额外的职责。就增加功能来说, Decorator模式相比生成子类更为灵活。该模式以对客 户端透明的方式扩展对象的功能。
2、适用环境
(1)在不影响其他对象的情况下,以动态、透明的方式给单个对象添加职责。
(2)处理那些可以撤消的职责。
(3)当不能采用生成子类的方法进行扩充时。一种情况是,可能有大量独立的扩展,为支持每一种组合将产生大量的 子类,使得子类数目呈爆炸性增长。另一种情况可能是因为类定义被隐藏,或类定义不能用于生成子类。
3、参与者
1.Component(被装饰对象的基类)
定义一个对象接口,可以给这些对象动态地添加职责。
2.ConcreteComponent(具体被装饰对象)
定义一个对象,可以给这个对象添加一些职责。
3.Decorator(装饰者抽象类)
维持一个指向Component实例的引用,并定义一个与Component接口一致的接口。
4.ConcreteDecorator(具体装饰者)
具体的装饰对象,给内部持有的具体被装饰对象,增加具体的职责。
4、类图
5、涉及角色
(1)抽象组件:定义一个抽象接口,来规范准备附加功能的类
(2)具体组件:将要被附加功能的类,实现抽象构件角色接口
(3)抽象装饰者:持有对具体构件角色的引用并定义与抽象构件角色一致的接口
(4)具体装饰:实现抽象装饰者角色,负责对具体构件添加额外功能。
6、代码
Component
public interface Person {
void eat();
}
ConcreteComponent
public class Man implements Person {
public void eat() {
System.out.println("男人在吃");
}
}
Decorator
public abstract class Decorator implements Person {
protected Person person;
public void setPerson(Person person) {
this.person = person;
}
public void eat() {
person.eat();
}
}
ConcreteDectrator
public class ManDecoratorA extends Decorator {
public void eat() {
super.eat();
reEat();
System.out.println("ManDecoratorA类");
}
public void reEat() {
System.out.println("再吃一顿饭");
}
}
public class ManDecoratorB extends Decorator {
public void eat() {
super.eat();
System.out.println("===============");
System.out.println("ManDecoratorB类");
}
}
Test
public class Test {
public static void main(String[] args) {
Man man = new Man();
ManDecoratorA md1 = new ManDecoratorA();
ManDecoratorB md2 = new ManDecoratorB();
md1.setPerson(man);
md2.setPerson(md1);
md2.eat();
}
}
7、装饰者模式小结:
OO原则:动态地将责任附加到对象上。想要扩展功能, 装饰者提供有别于继承的另一种选择。
8、要点:
1、继承属于扩展形式之一,但不见得是达到弹性设计的最佳方案。
2、在我们的设计中,应该允许行为可以被扩展,而不须修改现有的代码。
3、组合和委托可用于在运行时动态地加上新的行为。
4、除了继承,装饰者模式也可以让我们扩展行为。
5、装饰者模式意味着一群装饰者类, 这些类用来包装具体组件。
6、装饰者类反映出被装饰的组件类型(实际上,他们具有相同的类型,都经过接口或继承实现)。
7、装饰者可以在被装饰者的行为前面与/或后面加上自己的行为,甚至将被装饰者的行为整个取代掉,而达到特定的目的。
8、你可以有无数个装饰者包装一个组件。
9、 装饰者一般对组建的客户是透明的,除非客户程序依赖于组件的具体类型。
观察者模式:有时被称作发布/订阅模式,观察者模式定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象。这个主题对象在状态发生变化时,会通知所有观察者对象,使它们能够自动更新自己。
比较概念的解释是,目标和观察者是基类,目标提供维护观察者的一系列方法,观察者提供更新接口。具体观察者和具体目标继承各自的基类,然后具体观察者把自己注册到具体目标里,在具体目标发生变化时候,调度观察者的更新方法。
比如有个“天气中心”的具体目标A,专门监听天气变化,而有个显示天气的界面的观察者B,B就把自己注册到A里,当A触发天气变化,就调度B的更新方法,并带上自己的上下文。
发布/订阅模式
比较概念的解释是,订阅者把自己想订阅的事件注册到调度中心,当该事件触发时候,发布者发布该事件到调度中心(顺带上下文),由调度中心统一调度订阅者注册到调度中心的处理代码。
比如有个界面是实时显示天气,它就订阅天气事件(注册到调度中心,包括处理程序),当天气变化时(定时获取数据),就作为发布者发布天气信息到调度中心,调度中心就调度订阅者的天气处理程序。
总结
1. 从两张图片可以看到,最大的区别是调度的地方。
虽然两种模式都存在订阅者和发布者(具体观察者可认为是订阅者、具体目标可认为是发布者),但是观察者模式是由具体目标调度的,而发布/订阅模式是统一由调度中心调的,所以观察者模式的订阅者与发布者之间是存在依赖的,而发布/订阅模式则不会。
2. 两种模式都可以用于松散耦合,改进代码管理和潜在的复用。
附录
观察者模式实现代码(JavaScript版):
//观察者列表
function ObserverList(){
this.observerList = [];
}
ObserverList.prototype.add = function( obj ){
return this.observerList.push( obj );
};
ObserverList.prototype.count = function(){
return this.observerList.length;
};
ObserverList.prototype.get = function( index ){
if( index > -1 && index < this.observerList.length ){
return this.observerList[ index ];
}
};
ObserverList.prototype.indexOf = function( obj, startIndex ){
var i = startIndex;
while( i < this.observerList.length ){
if( this.observerList[i] === obj ){
return i;
}
i++;
}
return -1;
};
ObserverList.prototype.removeAt = function( index ){
this.observerList.splice( index, 1 );
};
//目标
function Subject(){
this.observers = new ObserverList();
}
Subject.prototype.addObserver = function( observer ){
this.observers.add( observer );
};
Subject.prototype.removeObserver = function( observer ){
this.observers.removeAt( this.observers.indexOf( observer, 0 ) );
};
Subject.prototype.notify = function( context ){
var observerCount = this.observers.count();
for(var i=0; i < observerCount; i++){
this.observers.get(i).update( context );
}
};
//观察者
function Observer(){
this.update = function(){
// ...
};
}
发布/订阅模式实现代码(JavaScript经典版):
var pubsub = {};
(function(myObject) {
// Storage for topics that can be broadcast
// or listened to
var topics = {};
// An topic identifier
var subUid = -1;
// Publish or broadcast events of interest
// with a specific topic name and arguments
// such as the data to pass along
myObject.publish = function( topic, args ) {
if ( !topics[topic] ) {
return false;
}
var subscribers = topics[topic],
len = subscribers ? subscribers.length : 0;
while (len--) {
subscribers[len].func( topic, args );
}
return this;
};
// Subscribe to events of interest
// with a specific topic name and a
// callback function, to be executed
// when the topic/event is observed
myObject.subscribe = function( topic, func ) {
if (!topics[topic]) {
topics[topic] = [];
}
var token = ( ++subUid ).toString();
topics[topic].push({
token: token,
func: func
});
return token;
};
// Unsubscribe from a specific
// topic, based on a tokenized reference
// to the subscription
myObject.unsubscribe = function( token ) {
for ( var m in topics ) {
if ( topics[m] ) {
for ( var i = 0, j = topics[m].length; i < j; i++ ) {
if ( topics[m][i].token === token ) {
topics[m].splice( i, 1 );
return token;
}
}
}
}
return this;
};
}( pubsub ));
策略模式:定义一系列的算法,把它们一个个封装起来, 并且使它们可相互替换。
外观模式:为子系统中的一组接口提供一个一致的界面,外观模式定义了一个高层接口,这个接口使得这一子系统更加容易使用。
命令模式:将一个请求封装成一个对象,从而使您可以用不同的请求对客户进行参数化。
创建者模式:将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示。
抽象工厂模式:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。
一、简单工厂模式:
实例化对象的时候不再使用 new Object()形式,可以根据用户的选择条件来实例化相关的类。对于客户端来说,去除了具体的类的依赖。只需要给出具体实例的描述给工厂,工厂就会自动返回具体的实例对象。
具体实现如下:
1. 定义一个操作接口:
public interface Operation {
public double getResult(double numberA,double numberB) throws Exception;
}
2. 定义具体的操作类:
public class Add implements Operation{
// 加法计算
public double getResult(double numberA, double numberB) {
return numberA + numberB;
}
}
public class Sub implements Operation{
// 减法计算
public double getResult(double numberA, double numberB) {
return numberA-numberB;
}
}
public class Mul implements Operation{
// 乘法计算
public double getResult(double numberA, double numberB) {
return numberA * numberB;
}
}
public class Div implements Operation {
// 除法计算
public double getResult(double numberA, double numberB) throws Exception {
if (numberB == 0) {
throw new Exception("除数不能为0!");
}
return numberA / numberB;
}
}
3. 定义简单工厂类:
public class EasyFactory {
// 简单工厂,根据字符串创建相应的对象
public static Operation createOperation(String name) {
Operation operationObj = null;
switch (name) {
case "+":
operationObj = new Add();
break;
case "-":
operationObj = new Sub();
break;
case "*":
operationObj = new Mul();
break;
case "/":
operationObj = new Div();
break;
}
return operationObj;
}
}
4. 用户端代码:
public class Client {
public static void main(String[] args) throws Exception {
Operation add = EasyFactory.createOperation("+");
Operation sub = EasyFactory.createOperation("-");
Operation mul = EasyFactory.createOperation("*");
Operation div = EasyFactory.createOperation("/");
System.out.println(add.getResult(1, 1));
System.out.println(sub.getResult(1, 1));
System.out.println(mul.getResult(1, 1));
System.out.println(div.getResult(1, 1));
}
}
Result:
2.0
0.0
1.0
1.0
我们无需提供具体的子类类名,只需要提供一个字符串即可得到相应的实例对象。这样的话,当子类的类名更换或者增加子类时我们都无需修改客户端代码,只需要在简单工厂类上增加一个分支判断代码即可。
使用这种模式,我们在生成工厂的时候可以加一些业务代码,如日志、判断业务等,这时候可以直接在switch case中加上去就行了,如下:
public class EasyFactory {
private static Operation operationObj = null;
private static Operation add(){
System.out.println("加法运算");
return new Add();
}
private static Operation sub(){
System.out.println("减法运算");
return new Sub();
}
private static Operation mul(){
System.out.println("乘法运算");
return new Mul();
}
private static Operation div(){
System.out.println("除法运算");
return new Div();
}
// 简单工厂,根据字符串创建相应的对象
public static Operation createOperation(String name) {
switch (name) {
case "+":
operationObj = add();
break;
case "-":
operationObj = sub();
break;
case "*":
operationObj = mul();
break;
case "/":
operationObj = div();
break;
}
return operationObj;
}
}
这样做的优点:我们可以对创建的对象进行一些 “加工” ,而且客户端并不知道,因为工厂隐藏了这些细节。如果,没有工厂的话,那我们是不是就得自己在客户端上写这些代码,这就好比本来可以在工厂里生产的东西,拿来自己手工制作,不仅麻烦以后还不好维护。
但是缺点也很明显:如果需要在方法里写很多与对象创建有关的业务代码,而且需要的创建的对象还不少的话,我们要在这个简单工厂类里编写很多个方法,每个方法里都得写很多相应的业务代码,而每次增加子类或者删除子类对象的创建都需要打开这简单工厂类来进行修改。这会导致这个简单工厂类很庞大臃肿、耦合性高,而且增加、删除某个子类对象的创建都需要打开简单工厂类来进行修改代码也违反了开-闭原则。
二、工厂模式
这时候就需要使用工厂模式了。工厂方法模式是对简单工厂模式进一步的解耦,因为在工厂方法模式中是一个子类对应一个工厂类,而这些工厂类都实现于一个抽象接口。这相当于是把原本会因为业务代码而庞大的简单工厂类,拆分成了一个个的工厂类,这样代码就不会都耦合在同一个类里了。
这时上面那个例子的结构图为:
1. 首先定义一个工厂接口:
import org.zero01.operation.Operation;
public interface Factory {
public Operation createOperation() ;
}
2. 然后是具体的工厂类:
// 加法类工厂
public class AddFactory implements Factory{
public Operation createOperation() {
System.out.println("加法运算");
return new Add();
}
}
// 减法类工厂
public class SubFactory implements Factory{
public Operation createOperation() {
System.out.println("减法运算");
return new Sub();
}
}
........
3. 运算类跟简单工厂一样。
4. 客户端代码:
public class Client {
public static void main(String[] args) throws Exception {
// 使用反射机制实例化工厂对象,因为字符串是可以通过变量改变的
Factory addFactory = (Factory) Class.forName("org.zero01.factory.AddFactory").newInstance();
Factory subFactory=(Factory) Class.forName("org.zero01.factory.SubFactory").newInstance();
// 通过工厂对象创建相应的实例对象
Operation add = addFactory.createOperation();
Operation sub = subFactory.createOperation();
System.out.println(add.getResult(1, 1));
System.out.println(sub.getResult(1, 1));
}
}
比较:
工厂模式中,要增加产品类时也要相应地增加工厂类,客户端的代码也增加了不少。工厂方法把简单工厂的内部逻辑判断转移到了客户端代码来进行。
你想要加功能,本来是改工厂类的,而现在是修改客户端。而且各个不同功能的实例对象的创建代码,也没有耦合在同一个工厂类里,这也是工厂方法模式对简单工厂模式解耦的一个体现。工厂方法模式克服了简单工厂会违背开-闭原则的缺点,又保持了封装对象创建过程的优点。
但工厂方法模式的缺点是每增加一个产品类,就需要增加一个对应的工厂类,增加了额外的开发量。
3. 抽象工厂模式:
场景:对数据库中的表进行修改
此时,使用工厂模式结构图如下:
1. 我们现在要对mysql/oracle数据库中的User表进行操作,User表定义如下:
public class User {
private int uid;
private String uname;
public int getUid() {
return uid;
}
public void setUid(int uid) {
this.uid = uid;
}
public String getUname() {
return uname;
}
public void setUname(String uname) {
this.uname = uname;
}
}
2. 接下来我们定义一个对User进行操作的接口:
public interface IUser {
public void insert(User user);
public User getUser(int uid);
}
3. 实现一个对mysql中User进行操作的类:
public class mysqlUser implements IUser{
public void insert(User user){
System.out.println("在mysql中的user表中插入一条元素");
}
public User getUser(int id){
System.out.println("在mysql中的user表得到id为"+id+"的一条数据");
return null;
}
}
实现对oracle中User进行操作的类:
public class oracleUser implements IUser{
@Override
public void insert(User user) {
System.out.println("在oracle中的user表中插入一条元素");
}
@Override
public User getUser(int uid) {
System.out.println("在oracle中的user表得到id为"+uid+"的一条数据");
return null;
}
}
4. 接下来定义一个工厂接口,用于生产访问User表的对象:
public interface sqlFactory {
public IUser createUser(); //用于访问User表的对象
}
5. 生产mysqlUser对象的mysql工厂类:
public class mysqlFactory implements sqlFactory {
@Override
public IUser createUser() {
return new mysqlUser(); //访问mysql中User表的对象
}
}
生成oracleUser对象的oracle工厂类:
public class oracleFactory implements sqlFactory {
@Override
public IUser createUser() {
return new oracleUser(); //访问oracle中User表的对象
}
}
6. 最后用户测试类如下:
public class test_abstractFactory {
public static void main(String[] args) {
sqlFactory factory1 = new mysqlFactory();
IUser userOperator = factory1.createUser();
userOperator.getUser(1);
userOperator.insert(new User());
}
}
结果为:
在mysql中的user表得到id为1的一条数据
在mysql中的user表中插入一条元素
到此为止,工厂模式都可以很好的解决,由于多态的关系,sqlFactory在声明对象之前都不知道在访问哪个数据库,却可以在运行时很好的完成任务,这就是业务逻辑与数据访问的解耦。
但是,当数据库中不止一个表的时候该怎么解决问题呢,此时就可以引入抽象工厂模式了,结构图如下:
1. 比如说现在增加了一个Login类,用于记录登陆信息:
package DesignPattern.abstractFactory;
import java.util.Date;
public class Login {
private int id;
private Date date;
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public Date getDate() {
return date;
}
public void setDate(Date date) {
this.date = date;
}
}
2. 此时就要相应地添加 对login表操作的Ilogin接口,mysqlLogin类,oracleLogin类:
public interface ILogin {
public void insert(Login login);
public Login getLogin(int id);
}
public class MysqlLogin implements ILogin{
public void insert(Login login) {
System.out.println("对 MySQL 里的 Login 表插入了一条数据");
}
public Login getLogin(int id) {
System.out.println("通过 uid 在 MySQL 里的 Login 表得到了一条数据");
return null;
}
}
public class OracleLogin implements ILogin{
public void insert(Login login) {
System.out.println("对 Oracle 里的 Login 表插入了一条数据");
}
public Login getLogin(int id) {
System.out.println("通过 uid 在 Oracle 里的 Login 表得到了一条数据");
return null;
}
}
3. 修改Factory接口及Factory实现类的内容:
IFactory,定义一个抽象的工厂接口,该工厂用于生产访问User表以及Login表的对象:
public interface IFactory {
public IUser createUser();
public ILogin createLogin();
}
public class MysqlFactory implements IFactory{
public IUser createUser() {
return new MysqlUser();
}
public ILogin createLogin() {
return new MysqlLogin();
}
}
public class OracleFactory implements IFactory{
public IUser createUser() {
return new OracleUser();
}
public ILogin createLogin() {
return new OracleLogin();
}
}
4. 客户端代码:
public class Client {
public static void main(String[] args){
User user=new User();
Login login = new Login();
// 只需要确定实例化哪一个数据库访问对象给factory
// IFactory factory=new MysqlFactory();
IFactory factory=new OracleFactory();
// 已与具体的数据库访问解除了耦合
IUser userOperation=factory.createUser();
userOperation.getUser(1);
userOperation.insert(user);
// 已与具体的数据库访问解除了耦合
ILogin loginOperation=factory.createLogin();
loginOperation.insert(login);
loginOperation.getLogin(1);
}
}
结果:
通过 uid 在 Oracle 里的 User 表得到了一条数据
对 Oracle 里的 User 表插入了一条数据
对 Oracle 里的 Login 表插入了一条数据
通过 uid 在 Oracle 里的 Login 表得到了一条数据
所以抽象工厂与工厂方法模式的区别在于:抽象工厂是可以生产多个产品的,例如 MysqlFactory 里可以生产 MysqlUser 以及 MysqlLogin 两个产品,而这两个产品又是属于一个系列的,因为它们都是属于MySQL数据库的表。而工厂方法模式则只能生产一个产品,例如之前的 MysqlFactory 里就只可以生产一个 MysqlUser 产品。
抽象工厂模式的优缺点:
优点:
1. 抽象工厂模式最大的好处是易于交换产品系列,由于具体工厂类,例如 IFactory factory=new OracleFactory(); 在一个应用中只需要在初始化的时候出现一次,这就使得改变一个应用的具体工厂变得非常容易,它只需要改变具体工厂即可使用不同的产品配置。不管是任何人的设计都无法去完全防止需求的更改,或者项目的维护,那么我们的理想便是让改动变得最小、最容易,例如我现在要更改以上代码的数据库访问时,只需要更改具体的工厂即可。
2. 抽象工厂模式的另一个好处就是它让具体的创建实例过程与客户端分离,客户端是通过它们的抽象接口操作实例,产品实现类的具体类名也被具体的工厂实现类分离,不会出现在客户端代码中。就像我们上面的例子,客户端只认识IUser和ILogin,至于它是MySQl里的表还是Oracle里的表就不知道了。
缺点:
1. 如果你的需求来自增加功能,比如增加Login表,就有点太烦了。首先需要增加 ILogin,mysqlLogin,oracleLogin。 然后我们还要去修改工厂类: sqlFactory, mysqlFactory, oracleFactory 才可以实现,需要修改三个类,实在是有点麻烦。
2. 还有就是,客户端程序肯定不止一个,每次都需要声明sqlFactory factory=new MysqlFactory(), 如果有100个调用数据库的类,就需要更改100次sqlFactory factory=new oracleFactory()。
4. 抽象工厂模式的改进1。(简单工厂+抽象工厂)
我们将IFactory、MySQLFactory以及OracleFactory三个工厂类都抛弃掉,取而代之的是一个简单工厂类EasyFactory,如下:
EasyFactory类,简单工厂:
public class EasyFactory {
// 数据库名称
private static String db="MySQL";
// private static String db="Oracle";
public static IUser createUser(){
IUser user=null;
switch (db){
case "MySQL":
user=new MysqlUser();
break;
case "Oracle":
user=new OracleUser();
break;
}
return user;
}
public static ILogin createLogin(){
ILogin login=null;
switch (db){
case "MySQL":
login=new MysqlLogin();
break;
case "Oracle":
login=new OracleLogin();
break;
}
return login;
}
}
客户端代码:
public class Client {
public static void main(String[] args){
User user=new User();
Login login = new Login();
// 直接得到实际的数据库访问实例,而不存在任何依赖
IUser userOperation= EasyFactory.createUser();
userOperation.getUser(1);
userOperation.insert(user);
// 直接得到实际的数据库访问实例,而不存在任何依赖
ILogin loginOperation=EasyFactory.createLogin();
loginOperation.insert(login);
loginOperation.getLogin(1);
}
}
由于事先在简单工厂类里设置好了db的值,所以简单工厂的方法都不需要由客户端来输入参数,这样在客户端就只需要使用 EasyFactory.createUser(); 和 EasyFactory.createLogin(); 方法来获得具体的数据库访问类的实例,客户端代码上没有出现任何一个 MySQL 或 Oracle 的字样,达到了解耦的目的,客户端已经不再受改动数据库访问的影响了。
5. 抽象工厂的改进2(反射+简单工厂)
使用反射的话,我们就可以不需要使用switch,因为使用switch的话,我添加一个sql server数据库的话,又要switch的话又需要添加case条件。
我们可以根据 选择的数据库名称,如 “mysql”, 利用反射技术自动的获得所需要的实例:
public class easyFactory1 {
private static String packName = "DesignPattern.abstractFactory";
private static String sqlName = "mysql";
public static IUser createUser() throws Exception{
String className = packName+"."+sqlName+"User";
return (IUser)Class.forName(className).newInstance();
}
public static ILogin createLogin() throws Exception{
String className = packName+"."+sqlName+"Login";
return (ILogin)Class.forName(className).newInstance();
}
}
以上我们使用简单工厂模式设计的代码中,是用一个字符串类型的db变量来存储数据库名称的,所以变量的值到底是 MySQL 还是 Oracle ,完全可以由事先设置的那个db变量来决定,而我们又可以通过反射来去获取实例,这样就可以去除switch语句了。
6. 抽象工厂的改进3(反射+配置文件+简单工厂)
在使用反射之后,我们还是需要进easyFactory中修改数据库类型,还不是完全符合开-闭原则。
我们可以通过配置文件来达到目的,每次通过读取配置文件来知道我们应该使用哪种数据库。
如下是一个json类型的配置文件,也可以使用xml类型的配置文件:
{
"packName": "DesignPattern.abstractFactory",
"DB": "Mysql"
}
之后就可以通过这个配置文件去找需要加载的类是哪一个。
我们通过反射机制+配置文件+简单工厂模式解决了数据库访问时的可维护、可扩展的问题。
2、基础知识
Java基本类型哪些,所占字节和范围
1)四种整数类型(byte、short、int、long): byte:8 位,用于表示最小数据单位,如文件中数据,-128~127 short:16 位,很少用,-32768 ~ 32767 int:32 位、最常用,-2^31-1~2^31 (21 亿) long:64 位、次常用 注意事项: int i=5; // 5 叫直接量(或字面量),即 直接写出的常数。 整数字面量默认都为 int 类型,所以在定义的 long 型数据后面加 L或 l。 小于 32 位数的变量,都按 int 结果计算。 强转符比数学运算符优先级高。见常量与变量中的例子。
2)两种浮点数类型(float、double): float:32 位,后缀 F 或 f,1 位符号位,8 位指数,23 位有效尾数。 double:64 位,最常用,后缀 D 或 d,1 位符号位,11 位指数,52 位有效尾 注意事项: 二 进 制 浮 点 数 : 1010100010=101010001.0*2=10101000.10*2^10(2次方)=1010100.010*2^11(3次方)= . 1010100010*2^1010(10次方) 尾数: . 1010100010 指数:1010 基数:2 浮点数字面量默认都为 double 类型,所以在定义的 float 型数据后面加F 或 f;double 类型可不写后缀,但在小数计算中一定要写 D 或 X.X float 的精度没有 long 高,有效位数(尾数)短。 float 的范围大于 long 指数可以很大。 浮点数是不精确的,不能对浮点数进行精确比较。
3)一种字符类型(char): char:16 位,是整数类型,用单引号括起来的 1 个字符(可以是一个中文字符),使用 Unicode 码代表字符,0~2^16-1(65535) 。 注意事项: 不能为 0个字符。 转义字符:\n 换行 \r 回车 \t Tab 字符 \" 双引号 \\ 表示一个\ 两字符 char 中间用“+”连接,内部先把字符转成 int 类型,再进行加法运算,char 本质就是个数!二进制的,显示的时候,经过“处理”显示为字符。
4)一种布尔类型(boolean):true 真 和 false 假。
5)类型转换: char--> 自动转换:byte-->short-->int-->long-->float-->double 强制转换:①会损失精度,产生误差,小数点以后的数字全部舍弃。②容易超过取值范围。
6)记忆:8位:Byte(字节型) 16位:short(短整型)、char(字符型) 32位:int(整型)、float(单精度型/浮点型) 64位:long(长整型)、double(双精度型) 最后一个:boolean(布尔类型
Set、List、Map的区别和联系
什么时候使用Hashmap
哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表,而HashMap的实现原理也常常出现在各类的面试题中,重要性可见一斑。本文会对java集合框架中的对应实现HashMap的实现原理进行讲解,然后会对JDK7的HashMap源码进行分析。
目录
一、什么是哈希表
五、总结
一、什么是哈希表
在讨论哈希表之前,我们先大概了解下其他数据结构在新增,查找等基础操作执行性能
数组:采用一段连续的存储单元来存储数据。对于指定下标的查找,时间复杂度为O(1);通过给定值进行查找,需要遍历数组,逐一比对给定关键字和数组元素,时间复杂度为O(n),当然,对于有序数组,则可采用二分查找,插值查找,斐波那契查找等方式,可将查找复杂度提高为O(logn);对于一般的插入删除操作,涉及到数组元素的移动,其平均复杂度也为O(n)
线性链表:对于链表的新增,删除等操作(在找到指定操作位置后),仅需处理结点间的引用即可,时间复杂度为O(1),而查找操作需要遍历链表逐一进行比对,复杂度为O(n)
二叉树:对一棵相对平衡的有序二叉树,对其进行插入,查找,删除等操作,平均复杂度均为O(logn)。
哈希表:相比上述几种数据结构,在哈希表中进行添加,删除,查找等操作,性能十分之高,不考虑哈希冲突的情况下,仅需一次定位即可完成,时间复杂度为O(1),接下来我们就来看看哈希表是如何实现达到惊艳的常数阶O(1)的。
我们知道,数据结构的物理存储结构只有两种:顺序存储结构和链式存储结构(像栈,队列,树,图等是从逻辑结构去抽象的,映射到内存中,也这两种物理组织形式),而在上面我们提到过,在数组中根据下标查找某个元素,一次定位就可以达到,哈希表利用了这种特性,哈希表的主干就是数组。
比如我们要新增或查找某个元素,我们通过把当前元素的关键字 通过某个函数映射到数组中的某个位置,通过数组下标一次定位就可完成操作。
存储位置 = f(关键字)
其中,这个函数f一般称为哈希函数,这个函数的设计好坏会直接影响到哈希表的优劣。举个例子,比如我们要在哈希表中执行插入操作:
查找操作同理,先通过哈希函数计算出实际存储地址,然后从数组中对应地址取出即可。
哈希冲突
然而万事无完美,如果两个不同的元素,通过哈希函数得出的实际存储地址相同怎么办?也就是说,当我们对某个元素进行哈希运算,得到一个存储地址,然后要进行插入的时候,发现已经被其他元素占用了,其实这就是所谓的哈希冲突,也叫哈希碰撞。前面我们提到过,哈希函数的设计至关重要,好的哈希函数会尽可能地保证 计算简单和散列地址分布均匀,但是,我们需要清楚的是,数组是一块连续的固定长度的内存空间,再好的哈希函数也不能保证得到的存储地址绝对不发生冲突。那么哈希冲突如何解决呢?哈希冲突的解决方案有多种:开放定址法(发生冲突,继续寻找下一块未被占用的存储地址),再散列函数法,链地址法,而HashMap即是采用了链地址法,也就是数组+链表的方式,
二、HashMap实现原理
HashMap的主干是一个Entry数组。Entry是HashMap的基本组成单元,每一个Entry包含一个key-value键值对。
//HashMap的主干数组,可以看到就是一个Entry数组,初始值为空数组{},主干数组的长度一定是2的次幂,至于为什么这么做,后面会有详细分析。
transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;
Entry是HashMap中的一个静态内部类。代码如下
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
Entry<K,V> next;//存储指向下一个Entry的引用,单链表结构
int hash;//对key的hashcode值进行hash运算后得到的值,存储在Entry,避免重复计算
/**
* Creates new entry.
*/
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
所以,HashMap的整体结构如下
简单来说,HashMap由数组+链表组成的,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的,如果定位到的数组位置不含链表(当前entry的next指向null),那么对于查找,添加等操作很快,仅需一次寻址即可;如果定位到的数组包含链表,对于添加操作,其时间复杂度为O(n),首先遍历链表,存在即覆盖,否则新增;对于查找操作来讲,仍需遍历链表,然后通过key对象的equals方法逐一比对查找。所以,性能考虑,HashMap中的链表出现越少,性能才会越好。
其他几个重要字段
//实际存储的key-value键值对的个数
transient int size;
//阈值,当table == {}时,该值为初始容量(初始容量默认为16);当table被填充了,也就是为table分配内存空间后,threshold一般为 capacity*loadFactory。HashMap在进行扩容时需要参考threshold,后面会详细谈到
int threshold;
//负载因子,代表了table的填充度有多少,默认是0.75
final float loadFactor;
//用于快速失败,由于HashMap非线程安全,在对HashMap进行迭代时,如果期间其他线程的参与导致HashMap的结构发生变化了(比如put,remove等操作),需要抛出异常ConcurrentModificationException
transient int modCount;
HashMap有4个构造器,其他构造器如果用户没有传入initialCapacity 和loadFactor这两个参数,会使用默认值
initialCapacity默认为16,loadFactory默认为0.75
我们看下其中一个
public HashMap(int initialCapacity, float loadFactor) {
//此处对传入的初始容量进行校验,最大不能超过MAXIMUM_CAPACITY = 1<<30(230)
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
threshold = initialCapacity;
init();//init方法在HashMap中没有实际实现,不过在其子类如 linkedHashMap中就会有对应实现
}
从上面这段代码我们可以看出,在常规构造器中,没有为数组table分配内存空间(有一个入参为指定Map的构造器例外),而是在执行put操作的时候才真正构建table数组
OK,接下来我们来看看put操作的实现吧
public V put(K key, V value) {
//如果table数组为空数组{},进行数组填充(为table分配实际内存空间),入参为threshold,此时threshold为initialCapacity 默认是1<<4(24=16)
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
//如果key为null,存储位置为table[0]或table[0]的冲突链上
if (key == null)
return putForNullKey(value);
int hash = hash(key);//对key的hashcode进一步计算,确保散列均匀
int i = indexFor(hash, table.length);//获取在table中的实际位置
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
//如果该对应数据已存在,执行覆盖操作。用新value替换旧value,并返回旧value
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;//保证并发访问时,若HashMap内部结构发生变化,快速响应失败
addEntry(hash, key, value, i);//新增一个entry
return null;
}
先来看看inflateTable这个方法
private void inflateTable(int toSize) {
int capacity = roundUpToPowerOf2(toSize);//capacity一定是2的次幂
threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);//此处为threshold赋值,取capacity*loadFactor和MAXIMUM_CAPACITY+1的最小值,capaticy一定不会超过MAXIMUM_CAPACITY,除非loadFactor大于1
table = new Entry[capacity];
initHashSeedAsNeeded(capacity);
}
inflateTable这个方法用于为主干数组table在内存中分配存储空间,通过roundUpToPowerOf2(toSize)可以确保capacity为大于或等于toSize的最接近toSize的二次幂,比如toSize=13,则capacity=16;to_size=16,capacity=16;to_size=17,capacity=32.
private static int roundUpToPowerOf2(int number) {
// assert number >= 0 : "number must be non-negative";
return number >= MAXIMUM_CAPACITY
? MAXIMUM_CAPACITY
: (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;
}
roundUpToPowerOf2中的这段处理使得数组长度一定为2的次幂,Integer.highestOneBit是用来获取最左边的bit(其他bit位为0)所代表的数值.
hash函数
//这是一个神奇的函数,用了很多的异或,移位等运算,对key的hashcode进一步进行计算以及二进制位的调整等来保证最终获取的存储位置尽量分布均匀
final int hash(Object k) {
int h = hashSeed;
if (0 != h && k instanceof String) {
return sun.misc.Hashing.stringHash32((String) k);
}
h ^= k.hashCode();
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
以上hash函数计算出的值,通过indexFor进一步处理来获取实际的存储位置
/**
* 返回数组下标
*/
static int indexFor(int h, int length) {
return h & (length-1);
}
h&(length-1)保证获取的index一定在数组范围内,举个例子,默认容量16,length-1=15,h=18,转换成二进制计算为
1 0 0 1 0
& 0 1 1 1 1
__________________
0 0 0 1 0 = 2
最终计算出的index=2。有些版本的对于此处的计算会使用 取模运算,也能保证index一定在数组范围内,不过位运算对计算机来说,性能更高一些(HashMap中有大量位运算)
所以最终存储位置的确定流程是这样的:
再来看看addEntry的实现:
void addEntry(int hash, K key, V value, int bucketIndex) {
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);//当size超过临界阈值threshold,并且即将发生哈希冲突时进行扩容
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}
createEntry(hash, key, value, bucketIndex);
}
通过以上代码能够得知,当发生哈希冲突并且size大于阈值的时候,需要进行数组扩容,扩容时,需要新建一个长度为之前数组2倍的新的数组,然后将当前的Entry数组中的元素全部传输过去,扩容后的新数组长度为之前的2倍,所以扩容相对来说是个耗资源的操作。
三、为何HashMap的数组长度一定是2的次幂?
我们来继续看上面提到的resize方法
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
Entry[] newTable = new Entry[newCapacity];
transfer(newTable, initHashSeedAsNeeded(newCapacity));
table = newTable;
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}
如果数组进行扩容,数组长度发生变化,而存储位置 index = h&(length-1),index也可能会发生变化,需要重新计算index,我们先来看看transfer这个方法
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
//for循环中的代码,逐个遍历链表,重新计算索引位置,将老数组数据复制到新数组中去(数组不存储实际数据,所以仅仅是拷贝引用而已)
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity);
//将当前entry的next链指向新的索引位置,newTable[i]有可能为空,有可能也是个entry链,如果是entry链,直接在链表头部插入。
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}
这个方法将老数组中的数据逐个链表地遍历,扔到新的扩容后的数组中,我们的数组索引位置的计算是通过 对key值的hashcode进行hash扰乱运算后,再通过和 length-1进行位运算得到最终数组索引位置。
hashMap的数组长度一定保持2的次幂,比如16的二进制表示为 10000,那么length-1就是15,二进制为01111,同理扩容后的数组长度为32,二进制表示为100000,length-1为31,二进制表示为011111。从下图可以我们也能看到这样会保证低位全为1,而扩容后只有一位差异,也就是多出了最左位的1,这样在通过 h&(length-1)的时候,只要h对应的最左边的那一个差异位为0,就能保证得到的新的数组索引和老数组索引一致(大大减少了之前已经散列良好的老数组的数据位置重新调换),个人理解。
还有,数组长度保持2的次幂,length-1的低位都为1,会使得获得的数组索引index更加均匀,比如:
我们看到,上面的&运算,高位是不会对结果产生影响的(hash函数采用各种位运算可能也是为了使得低位更加散列),我们只关注低位bit,如果低位全部为1,那么对于h低位部分来说,任何一位的变化都会对结果产生影响,也就是说,要得到index=21这个存储位置,h的低位只有这一种组合。这也是数组长度设计为必须为2的次幂的原因。
如果不是2的次幂,也就是低位不是全为1此时,要使得index=21,h的低位部分不再具有唯一性了,哈希冲突的几率会变的更大,同时,index对应的这个bit位无论如何不会等于1了,而对应的那些数组位置也就被白白浪费了。
get方法
public V get(Object key) {
//如果key为null,则直接去table[0]处去检索即可。
if (key == null)
return getForNullKey();
Entry<K,V> entry = getEntry(key);
return null == entry ? null : entry.getValue();
}
get方法通过key值返回对应value,如果key为null,直接去table[0]处检索。我们再看一下getEntry这个方法
final Entry<K,V> getEntry(Object key) {
if (size == 0) {
return null;
}
//通过key的hashcode值计算hash值
int hash = (key == null) ? 0 : hash(key);
//indexFor (hash&length-1) 获取最终数组索引,然后遍历链表,通过equals方法比对找出对应记录
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
可以看出,get方法的实现相对简单,key(hashcode)-->hash-->indexFor-->最终索引位置,找到对应位置table[i],再查看是否有链表,遍历链表,通过key的equals方法比对查找对应的记录。要注意的是,有人觉得上面在定位到数组位置之后然后遍历链表的时候,e.hash == hash这个判断没必要,仅通过equals判断就可以。其实不然,试想一下,如果传入的key对象重写了equals方法却没有重写hashCode,而恰巧此对象定位到这个数组位置,如果仅仅用equals判断可能是相等的,但其hashCode和当前对象不一致,这种情况,根据Object的hashCode的约定,不能返回当前对象,而应该返回null,后面的例子会做出进一步解释。
四、重写equals方法需同时重写hashCode方法
关于HashMap的源码分析就介绍到这儿了,最后我们再聊聊老生常谈的一个问题,各种资料上都会提到,“重写equals时也要同时覆盖hashcode”,我们举个小例子来看看,如果重写了equals而不重写hashcode会发生什么样的问题
/**
* Created by chengxiao on 2016/11/15.
*/
public class MyTest {
private static class Person{
int idCard;
String name;
public Person(int idCard, String name) {
this.idCard = idCard;
this.name = name;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()){
return false;
}
Person person = (Person) o;
//两个对象是否等值,通过idCard来确定
return this.idCard == person.idCard;
}
}
public static void main(String []args){
HashMap<Person,String> map = new HashMap<Person, String>();
Person person = new Person(1234,"乔峰");
//put到hashmap中去
map.put(person,"天龙八部");
//get取出,从逻辑上讲应该能输出“天龙八部”
System.out.println("结果:"+map.get(new Person(1234,"萧峰")));
}
}
实际输出结果:
结果:null
如果我们已经对HashMap的原理有了一定了解,这个结果就不难理解了。尽管我们在进行get和put操作的时候,使用的key从逻辑上讲是等值的(通过equals比较是相等的),但由于没有重写hashCode方法,所以put操作时,key(hashcode1)-->hash-->indexFor-->最终索引位置 ,而通过key取出value的时候 key(hashcode1)-->hash-->indexFor-->最终索引位置,由于hashcode1不等于hashcode2,导致没有定位到一个数组位置而返回逻辑上错误的值null(也有可能碰巧定位到一个数组位置,但是也会判断其entry的hash值是否相等,上面get方法中有提到。)
所以,在重写equals的方法的时候,必须注意重写hashCode方法,同时还要保证通过equals判断相等的两个对象,调用hashCode方法要返回同样的整数值。而如果equals判断不相等的两个对象,其hashCode可以相同(只不过会发生哈希冲突,应尽量避免)。
什么时候使用Linkedhashmap、Concurrenthashmap、Weakhashmap
Java7 HashMap
HashMap 是最简单的,一来我们非常熟悉,二来就是它不支持并发操作,所以源码也非常简单。
首先,我们用下面这张图来介绍 HashMap 的结构。
这个仅仅是示意图,因为没有考虑到数组要扩容的情况,具体的后面再说。
大方向上,HashMap 里面是一个数组,然后数组中每个元素是一个单向链表。
上图中,每个绿色的实体是嵌套类 Entry 的实例,Entry 包含四个属性:key, value, hash 值和用于单向链表的 next。
capacity:当前数组容量,始终保持 2^n,可以扩容,扩容后数组大小为当前的 2 倍。
loadFactor:负载因子,默认为 0.75。
threshold:扩容的阈值,等于 capacity * loadFactor
put 过程分析
还是比较简单的,跟着代码走一遍吧。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
|
数组初始化
在第一个元素插入 HashMap 的时候做一次数组的初始化,就是先确定初始的数组大小,并计算数组扩容的阈值。
1 2 3 4 5 6 7 8 9 10 |
|
这里有一个将数组大小保持为 2 的 n 次方的做法,Java7 和 Java8 的 HashMap 和 ConcurrentHashMap 都有相应的要求,只不过实现的代码稍微有些不同,后面再看到的时候就知道了。
计算具体数组位置
这个简单,我们自己也能 YY 一个:使用 key 的 hash 值对数组长度进行取模就可以了。
1 2 3 4 |
|
这个方法很简单,简单说就是取 hash 值的低 n 位。如在数组长度为 32 的时候,其实取的就是 key 的 hash 值的低 5 位,作为它在数组中的下标位置。
添加节点到链表中
找到数组下标后,会先进行 key 判重,如果没有重复,就准备将新值放入到链表的表头。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
这个方法的主要逻辑就是先判断是否需要扩容,需要的话先扩容,然后再将这个新的数据插入到扩容后的数组的相应位置处的链表的表头。
数组扩容
前面我们看到,在插入新值的时候,如果当前的 size 已经达到了阈值,并且要插入的数组位置上已经有元素,那么就会触发扩容,扩容后,数组大小为原来的 2 倍。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
扩容就是用一个新的大数组替换原来的小数组,并将原来数组中的值迁移到新的数组中。
由于是双倍扩容,迁移过程中,会将原来 table[i] 中的链表的所有节点,分拆到新的数组的 newTable[i] 和 newTable[i + oldLength] 位置上。如原来数组长度是 16,那么扩容后,原来 table[0] 处的链表中的所有元素会被分配到新数组中 newTable[0] 和 newTable[16] 这两个位置。代码比较简单,这里就不展开了。
get 过程分析
相对于 put 过程,get 过程是非常简单的。
- 根据 key 计算 hash 值。
- 找到相应的数组下标:hash & (length – 1)。
- 遍历该数组位置处的链表,直到找到相等(==或equals)的 key。
1 2 3 4 5 6 7 8 9 |
|
getEntry(key):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
Java7 ConcurrentHashMap
ConcurrentHashMap 和 HashMap 思路是差不多的,但是因为它支持并发操作,所以要复杂一些。
整个 ConcurrentHashMap 由一个个 Segment 组成,Segment 代表”部分“或”一段“的意思,所以很多地方都会将其描述为分段锁。注意,行文中,我很多地方用了“槽”来代表一个 segment。
简单理解就是,ConcurrentHashMap 是一个 Segment 数组,Segment 通过继承 ReentrantLock 来进行加锁,所以每次需要加锁的操作锁住的是一个 segment,这样只要保证每个 Segment 是线程安全的,也就实现了全局的线程安全。
concurrencyLevel:并行级别、并发数、Segment 数,怎么翻译不重要,理解它。默认是 16,也就是说 ConcurrentHashMap 有 16 个 Segments,所以理论上,这个时候,最多可以同时支持 16 个线程并发写,只要它们的操作分别分布在不同的 Segment 上。这个值可以在初始化的时候设置为其他值,但是一旦初始化以后,它是不可以扩容的。
再具体到每个 Segment 内部,其实每个 Segment 很像之前介绍的 HashMap,不过它要保证线程安全,所以处理起来要麻烦些。
初始化
initialCapacity:初始容量,这个值指的是整个 ConcurrentHashMap 的初始容量,实际操作的时候需要平均分给每个 Segment。
loadFactor:负载因子,之前我们说了,Segment 数组不可以扩容,所以这个负载因子是给每个 Segment 内部使用的。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
|
初始化完成,我们得到了一个 Segment 数组。
我们就当是用 new ConcurrentHashMap() 无参构造函数进行初始化的,那么初始化完成后:
- Segment 数组长度为 16,不可以扩容
- Segment[i] 的默认大小为 2,负载因子是 0.75,得出初始阈值为 1.5,也就是以后插入第一个元素不会触发扩容,插入第二个会进行第一次扩容
- 这里初始化了 segment[0],其他位置还是 null,至于为什么要初始化 segment[0],后面的代码会介绍
- 当前 segmentShift 的值为 32 – 4 = 28,segmentMask 为 16 – 1 = 15,姑且把它们简单翻译为移位数和掩码,这两个值马上就会用到
put 过程分析
我们先看 put 的主流程,对于其中的一些关键细节操作,后面会进行详细介绍。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|
第一层皮很简单,根据 hash 值很快就能找到相应的 Segment,之后就是 Segment 内部的 put 操作了。
Segment 内部是由 数组+链表 组成的。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
|
整体流程还是比较简单的,由于有独占锁的保护,所以 segment 内部的操作并不复杂。至于这里面的并发问题,我们稍后再进行介绍。
到这里 put 操作就结束了,接下来,我们说一说其中几步关键的操作。
初始化槽: ensureSegment
ConcurrentHashMap 初始化的时候会初始化第一个槽 segment[0],对于其他槽来说,在插入第一个值的时候进行初始化。
这里需要考虑并发,因为很可能会有多个线程同时进来初始化同一个槽 segment[k],不过只要有一个成功了就可以。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
|
总的来说,ensureSegment(int k) 比较简单,对于并发操作使用 CAS 进行控制。
我没搞懂这里为什么要搞一个 while 循环,CAS 失败不就代表有其他线程成功了吗,为什么要再进行判断?
获取写入锁: scanAndLockForPut
前面我们看到,在往某个 segment 中 put 的时候,首先会调用 node = tryLock() ? null : scanAndLockForPut(key, hash, value),也就是说先进行一次 tryLock() 快速获取该 segment 的独占锁,如果失败,那么进入到 scanAndLockForPut 这个方法来获取锁。
下面我们来具体分析这个方法中是怎么控制加锁的。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
|
这个方法有两个出口,一个是 tryLock() 成功了,循环终止,另一个就是重试次数超过了 MAX_SCAN_RETRIES,进到 lock() 方法,此方法会阻塞等待,直到成功拿到独占锁。
这个方法就是看似复杂,但是其实就是做了一件事,那就是获取该 segment 的独占锁,如果需要的话顺便实例化了一下 node。
扩容: rehash
重复一下,segment 数组不能扩容,扩容是 segment 数组某个位置内部的数组 HashEntry\[] 进行扩容,扩容后,容量为原来的 2 倍。
首先,我们要回顾一下触发扩容的地方,put 的时候,如果判断该值的插入会导致该 segment 的元素个数超过阈值,那么先进行扩容,再插值,读者这个时候可以回去 put 方法看一眼。
该方法不需要考虑并发,因为到这里的时候,是持有该 segment 的独占锁的。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
这里的扩容比之前的 HashMap 要复杂一些,代码难懂一点。上面有两个挨着的 for 循环,第一个 for 有什么用呢?
仔细一看发现,如果没有第一个 for 循环,也是可以工作的,但是,这个 for 循环下来,如果 lastRun 的后面还有比较多的节点,那么这次就是值得的。因为我们只需要克隆 lastRun 前面的节点,后面的一串节点跟着 lastRun 走就是了,不需要做任何操作。
我觉得 Doug Lea 的这个想法也是挺有意思的,不过比较坏的情况就是每次 lastRun 都是链表的最后一个元素或者很靠后的元素,那么这次遍历就有点浪费了。不过 Doug Lea 也说了,根据统计,如果使用默认的阈值,大约只有 1/6 的节点需要克隆。
get 过程分析
相对于 put 来说,get 真的不要太简单。
- 计算 hash 值,找到 segment 数组中的具体位置,或我们前面用的“槽”
- 槽中也是一个数组,根据 hash 找到数组中具体的位置
- 到这里是链表了,顺着链表进行查找即可
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
并发问题分析
现在我们已经说完了 put 过程和 get 过程,我们可以看到 get 过程中是没有加锁的,那自然我们就需要去考虑并发问题。
添加节点的操作 put 和删除节点的操作 remove 都是要加 segment 上的独占锁的,所以它们之间自然不会有问题,我们需要考虑的问题就是 get 的时候在同一个 segment 中发生了 put 或 remove 操作。
- put 操作的线程安全性。
- 初始化槽,这个我们之前就说过了,使用了 CAS 来初始化 Segment 中的数组。
- 添加节点到链表的操作是插入到表头的,所以,如果这个时候 get 操作在链表遍历的过程已经到了中间,是不会影响的。当然,另一个并发问题就是 get 操作在 put 之后,需要保证刚刚插入表头的节点被读取,这个依赖于 setEntryAt 方法中使用的 UNSAFE.putOrderedObject。
- 扩容。扩容是新创建了数组,然后进行迁移数据,最后面将 newTable 设置给属性 table。所以,如果 get 操作此时也在进行,那么也没关系,如果 get 先行,那么就是在旧的 table 上做查询操作;而 put 先行,那么 put 操作的可见性保证就是 table 使用了 volatile 关键字。
- remove 操作的线程安全性。
remove 操作我们没有分析源码,所以这里说的读者感兴趣的话还是需要到源码中去求实一下的。
get 操作需要遍历链表,但是 remove 操作会”破坏”链表。
如果 remove 破坏的节点 get 操作已经过去了,那么这里不存在任何问题。
如果 remove 先破坏了一个节点,分两种情况考虑。 1、如果此节点是头结点,那么需要将头结点的 next 设置为数组该位置的元素,table 虽然使用了 volatile 修饰,但是 volatile 并不能提供数组内部操作的可见性保证,所以源码中使用了 UNSAFE 来操作数组,请看方法 setEntryAt。2、如果要删除的节点不是头结点,它会将要删除节点的后继节点接到前驱节点中,这里的并发保证就是 next 属性是 volatile 的。
Java8 HashMap
Java8 对 HashMap 进行了一些修改,最大的不同就是利用了红黑树,所以其由 数组+链表+红黑树 组成。
根据 Java7 HashMap 的介绍,我们知道,查找的时候,根据 hash 值我们能够快速定位到数组的具体下标,但是之后的话,需要顺着链表一个个比较下去才能找到我们需要的,时间复杂度取决于链表的长度,为 O(n)。
为了降低这部分的开销,在 Java8 中,当链表中的元素超过了 8 个以后,会将链表转换为红黑树,在这些位置进行查找的时候可以降低时间复杂度为 O(logN)。
来一张图简单示意一下吧:
注意,上图是示意图,主要是描述结构,不会达到这个状态的,因为这么多数据的时候早就扩容了。
下面,我们还是用代码来介绍吧,个人感觉,Java8 的源码可读性要差一些,不过精简一些。
Java7 中使用 Entry 来代表每个 HashMap 中的数据节点,Java8 中使用 Node,基本没有区别,都是 key,value,hash 和 next 这四个属性,不过,Node 只能用于链表的情况,红黑树的情况需要使用 TreeNode。
我们根据数组元素中,第一个节点数据类型是 Node 还是 TreeNode 来判断该位置下是链表还是红黑树的。
put 过程分析
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
|
和 Java7 稍微有点不一样的地方就是,Java7 是先扩容后插入新值的,Java8 先插值再扩容,不过这个不重要。
数组扩容
resize() 方法用于初始化数组或数组扩容,每次扩容后,容量为原来的 2 倍,并进行数据迁移。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
|
get 过程分析
相对于 put 来说,get 真的太简单了。
- 计算 key 的 hash 值,根据 hash 值找到对应数组下标: hash & (length-1)
- 判断数组该位置处的元素是否刚好就是我们要找的,如果不是,走第三步
- 判断该元素类型是否是 TreeNode,如果是,用红黑树的方法取数据,如果不是,走第四步
- 遍历链表,直到找到相等(==或equals)的 key
1 2 3 4 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
Java8 ConcurrentHashMap
Java7 中实现的 ConcurrentHashMap 说实话还是比较复杂的,Java8 对 ConcurrentHashMap 进行了比较大的改动。建议读者可以参考 Java8 中 HashMap 相对于 Java7 HashMap 的改动,对于 ConcurrentHashMap,Java8 也引入了红黑树。
说实话,Java8 ConcurrentHashMap 源码真心不简单,最难的在于扩容,数据迁移操作不容易看懂。
我们先用一个示意图来描述下其结构:
结构上和 Java8 的 HashMap 基本上一样,不过它要保证线程安全性,所以在源码上确实要复杂一些。
初始化
1 2 3 4 5 6 7 8 9 10 11 |
|
这个初始化方法有点意思,通过提供初始容量,计算了 sizeCtl,sizeCtl = 【 (1.5 * initialCapacity + 1),然后向上取最近的 2 的 n 次方】。如 initialCapacity 为 10,那么得到 sizeCtl 为 16,如果 initialCapacity 为 11,得到 sizeCtl 为 32。
sizeCtl 这个属性使用的场景很多,不过只要跟着文章的思路来,就不会被它搞晕了。
如果你爱折腾,也可以看下另一个有三个参数的构造方法,这里我就不说了,大部分时候,我们会使用无参构造函数进行实例化,我们也按照这个思路来进行源码分析吧。
put 过程分析
仔细地一行一行代码看下去:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
|
put 的主流程看完了,但是至少留下了几个问题,第一个是初始化,第二个是扩容,第三个是帮助数据迁移,这些我们都会在后面进行一一介绍。
初始化数组:initTable
这个比较简单,主要就是初始化一个合适大小的数组,然后会设置 sizeCtl。
初始化方法中的并发问题是通过对 sizeCtl 进行一个 CAS 操作来控制的。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
|
链表转红黑树: treeifyBin
前面我们在 put 源码分析也说过,treeifyBin 不一定就会进行红黑树转换,也可能是仅仅做数组扩容。我们还是进行源码分析吧。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
|
扩容:tryPresize
如果说 Java8 ConcurrentHashMap 的源码不简单,那么说的就是扩容操作和迁移操作。
这个方法要完完全全看懂还需要看之后的 transfer 方法,读者应该提前知道这点。
这里的扩容也是做翻倍扩容的,扩容后数组容量为原来的 2 倍。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
|
这个方法的核心在于 sizeCtl 值的操作,首先将其设置为一个负数,然后执行 transfer(tab, null),再下一个循环将 sizeCtl 加 1,并执行 transfer(tab, nt),之后可能是继续 sizeCtl 加 1,并执行 transfer(tab, nt)。
所以,可能的操作就是执行 1 次 transfer(tab, null) + 多次 transfer(tab, nt),这里怎么结束循环的需要看完 transfer 源码才清楚。
数据迁移:transfer
下面这个方法很点长,将原来的 tab 数组的元素迁移到新的 nextTab 数组中。
虽然我们之前说的 tryPresize 方法中多次调用 transfer 不涉及多线程,但是这个 transfer 方法可以在其他地方被调用,典型地,我们之前在说 put 方法的时候就说过了,请往上看 put 方法,是不是有个地方调用了 helpTransfer 方法,helpTransfer 方法会调用 transfer 方法的。
此方法支持多线程执行,外围调用此方法的时候,会保证第一个发起数据迁移的线程,nextTab 参数为 null,之后再调用此方法的时候,nextTab 不会为 null。
阅读源码之前,先要理解并发操作的机制。原数组长度为 n,所以我们有 n 个迁移任务,让每个线程每次负责一个小任务是最简单的,每做完一个任务再检测是否有其他没做完的任务,帮助迁移就可以了,而 Doug Lea 使用了一个 stride,简单理解就是步长,每个线程每次负责迁移其中的一部分,如每次迁移 16 个小任务。所以,我们就需要一个全局的调度者来安排哪个线程执行哪几个任务,这个就是属性 transferIndex 的作用。
第一个发起数据迁移的线程会将 transferIndex 指向原数组最后的位置,然后从后往前的 stride 个任务属于第一个线程,然后将 transferIndex 指向新的位置,再往前的 stride 个任务属于第二个线程,依此类推。当然,这里说的第二个线程不是真的一定指代了第二个线程,也可以是同一个线程,这个读者应该能理解吧。其实就是将一个大的迁移任务分为了一个个任务包。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
|
说到底,transfer 这个方法并没有实现所有的迁移任务,每次调用这个方法只实现了 transferIndex 往前 stride 个位置的迁移工作,其他的需要由外围来控制。
这个时候,再回去仔细看 tryPresize 方法可能就会更加清晰一些了。
get 过程分析
get 方法从来都是最简单的,这里也不例外:
- 计算 hash 值
- 根据 hash 值找到数组对应位置: (n – 1) & h
- 根据该位置处结点性质进行相应查找
- 如果该位置为 null,那么直接返回 null 就可以了
- 如果该位置处的节点刚好就是我们需要的,返回该节点的值即可
- 如果该位置节点的 hash 值小于 0,说明正在扩容,或者是红黑树,后面我们再介绍 find 方法
- 如果以上 3 条都不满足,那就是链表,进行遍历比对即可
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
简单说一句,此方法的大部分内容都很简单,只有正好碰到扩容的情况,ForwardingNode.find(int h, Object k) 稍微复杂一些,不过在了解了数据迁移的过程后,这个也就不难了,所以限于篇幅这里也不展开说了。
哪些集合类是线程安全的
为什么Set、List、map不实现Cloneable和Serializable接口
Concurrenthashmap的实现,1.7和1.8的实现
Arrays.sort的实现
什么时候使用CopyOnArrayList
1. CopyOnWriteArrayList(写数组的拷贝)是ArrayList的一个线程安全的变体,CopyOnWriteArrayList和CopyOnWriteSet都是线程安全的集合,其中所有可变操作(add、set等等)都是通过对底层数组进行一次新的复制来实现的。
2. 它绝对不会抛出ConcurrentModificationException的异常。因为该列表(CopyOnWriteArrayList)在遍历时将不会被做任何的修改。
3. CopyOnWriteArrayList适合用在“读多,写少”的“并发”应用中,换句话说,它适合使用在读操作远远大于写操作的场景里,比如缓存。它不存在“扩容”的概念,每次写操作(add or remove)都要copy一个副本,在副本的基础上修改后改变array引用,所以称为“CopyOnWrite”,因此在写操作是加锁,并且对整个list的copy操作时相当耗时的,过多的写操作不推荐使用该存储结构。
4. CopyOnWriteArrayList的功能是是创建一个列表,有三种构造方法:
(1)CopyOnWriteArrayList ()创建一个空列表。
(2)CopyOnWriteArrayList (Collection<? extendsE> c)
创建一个按 collection的迭代器返回元素的顺序包含指定 collection元素的列表。
(3)CopyOnWriteArrayList(E[] toCopyIn)
创建一个保存给定数组的副本的列表。
付:private static final变量详解
1. private是私有的,只在同一个类或内部类里可以访问。
2. static是静态的,静态的变量是类的变量,不是对象的特性。
3. final修饰的变量一次赋值将不能被改变。
---------------------
volatile的使用
synchronied的使用
reentrantlock的实现和Synchronied的区别
CAS的实现原理以及问题
AQS的实现原理
接口和抽象类的区别,什么时候使用
类加载机制的步骤,每一步做了什么,static和final修改的成员变量的加载时机
双亲委派模型
反射机制:反射动态擦除泛型、反射动态调用方法等
动态绑定:父类引用指向子类对象
JVM内存管理机制:有哪些区域,每个区域做了什么
JVM垃圾回收机制:垃圾回收算法 垃圾回收器 垃圾回收策略
jvm参数的设置和jvm调优
什么情况产生年轻代内存溢出、什么情况产生年老代内存溢出
内部类:静态内部类和匿名内部类的使用和区别
Redis和memcached:什么时候选择redis,什么时候选择memcached,内存模型和存储策略是什么样的
MySQL的基本操作 主从数据库一致性维护
mysql的优化策略有哪些
mysql索引的实现 B+树的实现原理
什么情况索引不会命中,会造成全表扫描
java中bio nio aio的区别和联系
为什么bio是阻塞的 nio是非阻塞的 nio是模型是什么样的
Java io的整体架构和使用的设计模式
Reactor模型和Proactor模型
http请求报文结构和内容
http三次握手和四次挥手
rpc相关:如何设计一个rpc框架,从io模型 传输协议 序列化方式综合考虑
Linux命令 统计,排序,前几问题等
StringBuff 和StringBuilder的实现,底层实现是通过byte数据,外加数组的拷贝来实现的
cas操作的使用
内存缓存和数据库的一致性同步实现
微服务的优缺点
线程池的参数问题
ip问题 如何判断ip是否在多个ip段中
判断数组两个中任意两个数之和是否为给定的值
乐观锁和悲观锁的实现
synchronized实现原理
你在项目中遇到的困难和怎么解决的
你在项目中完成的比较出色的亮点
消息队列广播模式和发布/订阅模式的区别
生产者消费者代码实现
死锁代码实现
线程池:参数,每个参数的作用,几种不同线程池的比较,阻塞队列的使用,拒绝策略
Future和ListenableFuture 异步回调相关
算法相关:判断能否从数组中找出两个数字和为给定值,随机生成1~10000不重复并放入数组,求数组的子数组的最大和,二分查找算法的实现及其时间复杂计算
3、其它
算法:常用排序算法,二分查找,链表相关,数组相关,字符串相关,树相关等
常见序列化协议及其优缺点
memcached内存原理,为什么是基于块的存储
搭建一个rpc需要准备什么
如果线上服务器频繁地出现full gc ,如何去排查
如果某一时刻线上机器突然量变得很大,服务扛不住了,怎么解决
LUR算法的实现
LinkedHashMap实现LRU
定义栈的数据结构,请在该类型中实现一个能够找到栈最小元素的min函数
海量数据处理的解决思路
reactor模型的演变
阻塞、非阻塞、同步、异步区别
Collection的子接口
jvm调优相关
zookeeper相关,节点类型,如何实现服务发现和服务注册
nginx负载均衡相关,让你去实现负载均衡,该怎么实现
linux命令,awk、cat、sort、cut、grep、uniq、wc、top等
压力测试相关,怎么分析,单接口压测和多情况下的压测
你觉得你的有点是什么,你的缺点是什么
spring mvc的实现原理
SpringMVC的工作原理图:
SpringMVC流程
1、 用户发送请求至前端控制器DispatcherServlet。
2、 DispatcherServlet收到请求调用HandlerMapping处理器映射器。
3、 处理器映射器找到具体的处理器(可以根据xml配置、注解进行查找),生成处理器对象及处理器拦截器(如果有则生成)一并返回给DispatcherServlet。
4、 DispatcherServlet调用HandlerAdapter处理器适配器。
5、 HandlerAdapter经过适配调用具体的处理器(Controller,也叫后端控制器)。
6、 Controller执行完成返回ModelAndView。
7、 HandlerAdapter将controller执行结果ModelAndView返回给DispatcherServlet。
8、 DispatcherServlet将ModelAndView传给ViewReslover视图解析器。
9、 ViewReslover解析后返回具体View。
10、DispatcherServlet根据View进行渲染视图(即将模型数据填充至视图中)。
11、 DispatcherServlet响应用户。
组件说明:
以下组件通常使用框架提供实现:
DispatcherServlet:作为前端控制器,整个流程控制的中心,控制其它组件执行,统一调度,降低组件之间的耦合性,提高每个组件的扩展性。
HandlerMapping:通过扩展处理器映射器实现不同的映射方式,例如:配置文件方式,实现接口方式,注解方式等。
HandlAdapter:通过扩展处理器适配器,支持更多类型的处理器。
ViewResolver:通过扩展视图解析器,支持更多类型的视图解析,例如:jsp、freemarker、pdf、excel等。
组件:
1、前端控制器DispatcherServlet(不需要工程师开发),由框架提供
作用:接收请求,响应结果,相当于转发器,中央处理器。有了dispatcherServlet减少了其它组件之间的耦合度。
用户请求到达前端控制器,它就相当于mvc模式中的c,dispatcherServlet是整个流程控制的中心,由它调用其它组件处理用户的请求,dispatcherServlet的存在降低了组件之间的耦合性。
2、处理器映射器HandlerMapping(不需要工程师开发),由框架提供
作用:根据请求的url查找Handler
HandlerMapping负责根据用户请求找到Handler即处理器,springmvc提供了不同的映射器实现不同的映射方式,例如:配置文件方式,实现接口方式,注解方式等。
3、处理器适配器HandlerAdapter
作用:按照特定规则(HandlerAdapter要求的规则)去执行Handler
通过HandlerAdapter对处理器进行执行,这是适配器模式的应用,通过扩展适配器可以对更多类型的处理器进行执行。
4、处理器Handler(需要工程师开发)
注意:编写Handler时按照HandlerAdapter的要求去做,这样适配器才可以去正确执行Handler
Handler 是继DispatcherServlet前端控制器的后端控制器,在DispatcherServlet的控制下Handler对具体的用户请求进行处理。
由于Handler涉及到具体的用户业务请求,所以一般情况需要工程师根据业务需求开发Handler。
5、视图解析器View resolver(不需要工程师开发),由框架提供
作用:进行视图解析,根据逻辑视图名解析成真正的视图(view)
View Resolver负责将处理结果生成View视图,View Resolver首先根据逻辑视图名解析成物理视图名即具体的页面地址,再生成View视图对象,最后对View进行渲染将处理结果通过页面展示给用户。 springmvc框架提供了很多的View视图类型,包括:jstlView、freemarkerView、pdfView等。
一般情况下需要通过页面标签或页面模版技术将模型数据通过页面展示给用户,需要由工程师根据业务需求开发具体的页面。
6、视图View(需要工程师开发jsp...)
View是一个接口,实现类支持不同的View类型(jsp、freemarker、pdf...)
核心架构的具体流程步骤如下:
1、首先用户发送请求——>DispatcherServlet,前端控制器收到请求后自己不进行处理,而是委托给其他的解析器进行处理,作为统一访问点,进行全局的流程控制;
2、DispatcherServlet——>HandlerMapping, HandlerMapping 将会把请求映射为HandlerExecutionChain 对象(包含一个Handler 处理器(页面控制器)对象、多个HandlerInterceptor 拦截器)对象,通过这种策略模式,很容易添加新的映射策略;
3、DispatcherServlet——>HandlerAdapter,HandlerAdapter 将会把处理器包装为适配器,从而支持多种类型的处理器,即适配器设计模式的应用,从而很容易支持很多类型的处理器;
4、HandlerAdapter——>处理器功能处理方法的调用,HandlerAdapter 将会根据适配的结果调用真正的处理器的功能处理方法,完成功能处理;并返回一个ModelAndView 对象(包含模型数据、逻辑视图名);
5、ModelAndView的逻辑视图名——> ViewResolver, ViewResolver 将把逻辑视图名解析为具体的View,通过这种策略模式,很容易更换其他视图技术;
6、View——>渲染,View会根据传进来的Model模型数据进行渲染,此处的Model实际是一个Map数据结构,因此很容易支持其他视图技术;
7、返回控制权给DispatcherServlet,由DispatcherServlet返回响应给用户,到此一个流程结束。
下边两个组件通常情况下需要开发:
Handler:处理器,即后端控制器用controller表示。
View:视图,即展示给用户的界面,视图中通常需要标签语言展示模型数据。
在将SpringMVC之前我们先来看一下什么是MVC模式
MVC:MVC是一种设计模式
MVC的原理图:
分析:
M-Model 模型(完成业务逻辑:有javaBean构成,service+dao+entity)
V-View 视图(做界面的展示 jsp,html……)
C-Controller 控制器(接收请求—>调用模型—>根据结果派发页面)
springMVC是什么:
springMVC是一个MVC的开源框架,springMVC=struts2+spring,springMVC就相当于是Struts2加上sring的整合,但是这里有一个疑惑就是,springMVC和spring是什么样的关系呢?这个在百度百科上有一个很好的解释:意思是说,springMVC是spring的一个后续产品,其实就是spring在原有基础上,又提供了web应用的MVC模块,可以简单的把springMVC理解为是spring的一个模块(类似AOP,IOC这样的模块),网络上经常会说springMVC和spring无缝集成,其实springMVC就是spring的一个子模块,所以根本不需要同spring进行整合。
SpringMVC的原理图:
看到这个图大家可能会有很多的疑惑,现在我们来看一下这个图的步骤:(可以对比MVC的原理图进行理解)
第一步:用户发起请求到前端控制器(DispatcherServlet)
第二步:前端控制器请求处理器映射器(HandlerMappering)去查找处理器(Handle):通过xml配置或者注解进行查找
第三步:找到以后处理器映射器(HandlerMappering)像前端控制器返回执行链(HandlerExecutionChain)
第四步:前端控制器(DispatcherServlet)调用处理器适配器(HandlerAdapter)去执行处理器(Handler)
第五步:处理器适配器去执行Handler
第六步:Handler执行完给处理器适配器返回ModelAndView
第七步:处理器适配器向前端控制器返回ModelAndView
第八步:前端控制器请求视图解析器(ViewResolver)去进行视图解析
第九步:视图解析器像前端控制器返回View
第十步:前端控制器对视图进行渲染
第十一步:前端控制器向用户响应结果
看到这些步骤我相信大家很感觉非常的乱,这是正常的,但是这里主要是要大家理解springMVC中的几个组件:
前端控制器(DispatcherServlet):接收请求,响应结果,相当于电脑的CPU。
处理器映射器(HandlerMapping):根据URL去查找处理器
处理器(Handler):(需要程序员去写代码处理逻辑的)
处理器适配器(HandlerAdapter):会把处理器包装成适配器,这样就可以支持多种类型的处理器,类比笔记本的适配器(适配器模式的应用)
视图解析器(ViewResovler):进行视图解析,多返回的字符串,进行处理,可以解析成对应的页面
谈谈对Spring IOC的理解
学习过Spring框架的人一定都会听过Spring的IoC(控制反转) 、DI(依赖注入)这两个概念,对于初学Spring的人来说,总觉得IoC 、DI这两个概念是模糊不清的,是很难理解的,今天和大家分享网上的一些技术大牛们对Spring框架的IOC的理解以及谈谈我对Spring Ioc的理解。
1.1、IoC是什么
Ioc—Inversion of Control,即“控制反转”,不是什么技术,而是一种设计思想。在Java开发中,Ioc意味着将你设计好的对象交给容器控制,而不是传统的在你的对象内部直接控制。如何理解好Ioc呢?理解好Ioc的关键是要明确“谁控制谁,控制什么,为何是反转(有反转就应该有正转了),哪些方面反转了”,那我们来深入分析一下:
●谁控制谁,控制什么:传统Java SE程序设计,我们直接在对象内部通过new进行创建对象,是程序主动去创建依赖对象;而IoC是有专门一个容器来创建这些对象,即由Ioc容器来控制对 象的创建;谁控制谁?当然是IoC 容器控制了对象;控制什么?那就是主要控制了外部资源获取(不只是对象包括比如文件等)。
●为何是反转,哪些方面反转了:有反转就有正转,传统应用程序是由我们自己在对象中主动控制去直接获取依赖对象,也就是正转;而反转则是由容器来帮忙创建及注入依赖对象;为何是反转?因为由容器帮我们查找及注入依赖对象,对象只是被动的接受依赖对象,所以是反转;哪些方面反转了?依赖对象的获取被反转了。
用图例说明一下,传统程序设计如图2-1,都是主动去创建相关对象然后再组合起来:
图1-1 传统应用程序示意图
当有了IoC/DI的容器后,在客户端类中不再主动去创建这些对象了,如图2-2所示:
图1-2有IoC/DI容器后程序结构示意图
1.2、IoC能做什么
IoC 不是一种技术,只是一种思想,一个重要的面向对象编程的法则,它能指导我们如何设计出松耦合、更优良的程序。传统应用程序都是由我们在类内部主动创建依赖对象,从而导致类与类之间高耦合,难于测试;有了IoC容器后,把创建和查找依赖对象的控制权交给了容器,由容器进行注入组合对象,所以对象与对象之间是 松散耦合,这样也方便测试,利于功能复用,更重要的是使得程序的整个体系结构变得非常灵活。
其实IoC对编程带来的最大改变不是从代码上,而是从思想上,发生了“主从换位”的变化。应用程序原本是老大,要获取什么资源都是主动出击,但是在IoC/DI思想中,应用程序就变成被动的了,被动的等待IoC容器来创建并注入它所需要的资源了。
IoC很好的体现了面向对象设计法则之一—— 好莱坞法则:“别找我们,我们找你”;即由IoC容器帮对象找相应的依赖对象并注入,而不是由对象主动去找。
1.3、IoC和DI
DI—Dependency Injection,即“依赖注入”:组件之间依赖关系由容器在运行期决定,形象的说,即由容器动态的将某个依赖关系注入到组件之中。依赖注入的目的并非为软件系统带来更多功能,而是为了提升组件重用的频率,并为系统搭建一个灵活、可扩展的平台。通过依赖注入机制,我们只需要通过简单的配置,而无需任何代码就可指定目标需要的资源,完成自身的业务逻辑,而不需要关心具体的资源来自何处,由谁实现。
理解DI的关键是:“谁依赖谁,为什么需要依赖,谁注入谁,注入了什么”,那我们来深入分析一下:
●谁依赖于谁:当然是应用程序依赖于IoC容器;
●为什么需要依赖:应用程序需要IoC容器来提供对象需要的外部资源;
●谁注入谁:很明显是IoC容器注入应用程序某个对象,应用程序依赖的对象;
●注入了什么:就是注入某个对象所需要的外部资源(包括对象、资源、常量数据)。
IoC和DI由什么关系呢?其实它们是同一个概念的不同角度描述,由于控制反转概念比较含糊(可能只是理解为容器控制对象这一个层面,很难让人想到谁来维护对象关系),所以2004年大师级人物Martin Fowler又给出了一个新的名字:“依赖注入”,相对IoC 而言,“依赖注入”明确描述了“被注入对象依赖IoC容器配置依赖对象”。
看过很多对Spring的Ioc理解的文章,好多人对Ioc和DI的解释都晦涩难懂,反正就是一种说不清,道不明的感觉,读完之后依然是一头雾水,感觉就是开涛这位技术牛人写得特别通俗易懂,他清楚地解释了IoC(控制反转) 和DI(依赖注入)中的每一个字,读完之后给人一种豁然开朗的感觉。我相信对于初学Spring框架的人对Ioc的理解应该是有很大帮助的。
二、分享Bromon的blog上对IoC与DI浅显易懂的讲解
2.1、IoC(控制反转)
首先想说说IoC(Inversion of Control,控制反转)。这是spring的核心,贯穿始终。所谓IoC,对于spring框架来说,就是由spring来负责控制对象的生命周期和对象间的关系。这是什么意思呢,举个简单的例子,我们是如何找女朋友的?常见的情况是,我们到处去看哪里有长得漂亮身材又好的mm,然后打听她们的兴趣爱好、qq号、电话号、ip号、iq号………,想办法认识她们,投其所好送其所要,然后嘿嘿……这个过程是复杂深奥的,我们必须自己设计和面对每个环节。传统的程序开发也是如此,在一个对象中,如果要使用另外的对象,就必须得到它(自己new一个,或者从JNDI中查询一个),使用完之后还要将对象销毁(比如Connection等),对象始终会和其他的接口或类藕合起来。
那么IoC是如何做的呢?有点像通过婚介找女朋友,在我和女朋友之间引入了一个第三者:婚姻介绍所。婚介管理了很多男男女女的资料,我可以向婚介提出一个列表,告诉它我想找个什么样的女朋友,比如长得像李嘉欣,身材像林熙雷,唱歌像周杰伦,速度像卡洛斯,技术像齐达内之类的,然后婚介就会按照我们的要求,提供一个mm,我们只需要去和她谈恋爱、结婚就行了。简单明了,如果婚介给我们的人选不符合要求,我们就会抛出异常。整个过程不再由我自己控制,而是有婚介这样一个类似容器的机构来控制。Spring所倡导的开发方式就是如此,所有的类都会在spring容器中登记,告诉spring你是个什么东西,你需要什么东西,然后spring会在系统运行到适当的时候,把你要的东西主动给你,同时也把你交给其他需要你的东西。所有的类的创建、销毁都由 spring来控制,也就是说控制对象生存周期的不再是引用它的对象,而是spring。对于某个具体的对象而言,以前是它控制其他对象,现在是所有对象都被spring控制,所以这叫控制反转。
2.2、DI(依赖注入)
IoC的一个重点是在系统运行中,动态的向某个对象提供它所需要的其他对象。这一点是通过DI(Dependency Injection,依赖注入)来实现的。比如对象A需要操作数据库,以前我们总是要在A中自己编写代码来获得一个Connection对象,有了 spring我们就只需要告诉spring,A中需要一个Connection,至于这个Connection怎么构造,何时构造,A不需要知道。在系统运行时,spring会在适当的时候制造一个Connection,然后像打针一样,注射到A当中,这样就完成了对各个对象之间关系的控制。A需要依赖 Connection才能正常运行,而这个Connection是由spring注入到A中的,依赖注入的名字就这么来的。那么DI是如何实现的呢? Java 1.3之后一个重要特征是反射(reflection),它允许程序在运行的时候动态的生成对象、执行对象的方法、改变对象的属性,spring就是通过反射来实现注入的。
理解了IoC和DI的概念后,一切都将变得简单明了,剩下的工作只是在spring的框架中堆积木而已。
三、我对IoC(控制反转)和DI(依赖注入)的理解
在平时的java应用开发中,我们要实现某一个功能或者说是完成某个业务逻辑时至少需要两个或以上的对象来协作完成,在没有使用Spring的时候,每个对象在需要使用他的合作对象时,自己均要使用像new object() 这样的语法来将合作对象创建出来,这个合作对象是由自己主动创建出来的,创建合作对象的主动权在自己手上,自己需要哪个合作对象,就主动去创建,创建合作对象的主动权和创建时机是由自己把控的,而这样就会使得对象间的耦合度高了,A对象需要使用合作对象B来共同完成一件事,A要使用B,那么A就对B产生了依赖,也就是A和B之间存在一种耦合关系,并且是紧密耦合在一起,而使用了Spring之后就不一样了,创建合作对象B的工作是由Spring来做的,Spring创建好B对象,然后存储到一个容器里面,当A对象需要使用B对象时,Spring就从存放对象的那个容器里面取出A要使用的那个B对象,然后交给A对象使用,至于Spring是如何创建那个对象,以及什么时候创建好对象的,A对象不需要关心这些细节问题(你是什么时候生的,怎么生出来的我可不关心,能帮我干活就行),A得到Spring给我们的对象之后,两个人一起协作完成要完成的工作即可。
所以控制反转IoC(Inversion of Control)是说创建对象的控制权进行转移,以前创建对象的主动权和创建时机是由自己把控的,而现在这种权力转移到第三方,比如转移交给了IoC容器,它就是一个专门用来创建对象的工厂,你要什么对象,它就给你什么对象,有了 IoC容器,依赖关系就变了,原先的依赖关系就没了,它们都依赖IoC容器了,通过IoC容器来建立它们之间的关系。
这是我对Spring的IoC(控制反转)的理解。DI(依赖注入)其实就是IOC的另外一种说法,DI是由Martin Fowler 在2004年初的一篇论文中首次提出的。他总结:控制的什么被反转了?就是:获得依赖对象的方式反转了。
AOP
AOP(Aspect Oriented Programming),即面向切面编程,可以说是OOP(Object Oriented Programming,面向对象编程)的补充和完善。OOP引入封装、继承、多态等概念来建立一种对象层次结构,用于模拟公共行为的一个集合。不过OOP允许开发者定义纵向的关系,但并不适合定义横向的关系,例如日志功能。日志代码往往横向地散布在所有对象层次中,而与它对应的对象的核心功能毫无关系对于其他类型的代码,如安全性、异常处理和透明的持续性也都是如此,这种散布在各处的无关的代码被称为横切(cross cutting),在OOP设计中,它导致了大量代码的重复,而不利于各个模块的重用。
AOP技术恰恰相反,它利用一种称为"横切"的技术,剖解开封装的对象内部,并将那些影响了多个类的公共行为封装到一个可重用模块,并将其命名为"Aspect",即切面。所谓"切面",简单说就是那些与业务无关,却为业务模块所共同调用的逻辑或责任封装起来,便于减少系统的重复代码,降低模块之间的耦合度,并有利于未来的可操作性和可维护性。
使用"横切"技术,AOP把软件系统分为两个部分:核心关注点和横切关注点。业务处理的主要流程是核心关注点,与之关系不大的部分是横切关注点。横切关注点的一个特点是,他们经常发生在核心关注点的多处,而各处基本相似,比如权限认证、日志、事物。AOP的作用在于分离系统中的各种关注点,将核心关注点和横切关注点分离开来。
AOP核心概念
1、横切关注点
对哪些方法进行拦截,拦截后怎么处理,这些关注点称之为横切关注点
2、切面(aspect)
类是对物体特征的抽象,切面就是对横切关注点的抽象
3、连接点(joinpoint)
被拦截到的点,因为Spring只支持方法类型的连接点,所以在Spring中连接点指的就是被拦截到的方法,实际上连接点还可以是字段或者构造器
4、切入点(pointcut)
对连接点进行拦截的定义
5、通知(advice)
所谓通知指的就是指拦截到连接点之后要执行的代码,通知分为前置、后置、异常、最终、环绕通知五类
6、目标对象
代理的目标对象
7、织入(weave)
将切面应用到目标对象并导致代理对象创建的过程
8、引入(introduction)
在不修改代码的前提下,引入可以在运行期为类动态地添加一些方法或字段
Spring对AOP的支持
Spring中AOP代理由Spring的IOC容器负责生成、管理,其依赖关系也由IOC容器负责管理。因此,AOP代理可以直接使用容器中的其它bean实例作为目标,这种关系可由IOC容器的依赖注入提供。Spring创建代理的规则为:
1、默认使用Java动态代理来创建AOP代理,这样就可以为任何接口实例创建代理了
2、当需要代理的类不是代理接口的时候,Spring会切换为使用CGLIB代理,也可强制使用CGLIB
AOP编程其实是很简单的事情,纵观AOP编程,程序员只需要参与三个部分:
1、定义普通业务组件
2、定义切入点,一个切入点可能横切多个业务组件
3、定义增强处理,增强处理就是在AOP框架为普通业务组件织入的处理动作
所以进行AOP编程的关键就是定义切入点和定义增强处理,一旦定义了合适的切入点和增强处理,AOP框架将自动生成AOP代理,即:代理对象的方法=增强处理+被代理对象的方法。
下面给出一个Spring AOP的.xml文件模板,名字叫做aop.xml,之后的内容都在aop.xml上进行扩展:
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-4.2.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-4.2.xsd"> </beans>
基于Spring的AOP简单实现
注意一下,在讲解之前,说明一点:使用Spring AOP,要成功运行起代码,只用Spring提供给开发者的jar包是不够的,请额外上网下载两个jar包:
1、aopalliance.jar
2、aspectjweaver.jar
开始讲解用Spring AOP的XML实现方式,先定义一个接口:
public interface HelloWorld { void printHelloWorld(); void doPrint(); }
定义两个接口实现类:
public class HelloWorldImpl1 implements HelloWorld { public void printHelloWorld() { System.out.println("Enter HelloWorldImpl1.printHelloWorld()"); } public void doPrint() { System.out.println("Enter HelloWorldImpl1.doPrint()"); return ; } }
public class HelloWorldImpl2 implements HelloWorld { public void printHelloWorld() { System.out.println("Enter HelloWorldImpl2.printHelloWorld()"); } public void doPrint() { System.out.println("Enter HelloWorldImpl2.doPrint()"); return ; } }
横切关注点,这里是打印时间:
public class TimeHandler { public void printTime() { System.out.println("CurrentTime = " + System.currentTimeMillis()); } }
有这三个类就可以实现一个简单的Spring AOP了,看一下aop.xml的配置:
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-4.2.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-4.2.xsd"> <bean id="helloWorldImpl1" class="com.xrq.aop.HelloWorldImpl1" /> <bean id="helloWorldImpl2" class="com.xrq.aop.HelloWorldImpl2" /> <bean id="timeHandler" class="com.xrq.aop.TimeHandler" /> <aop:config> <aop:aspect id="time" ref="timeHandler"> <aop:pointcut id="addAllMethod" expression="execution(* com.xrq.aop.HelloWorld.*(..))" /> <aop:before method="printTime" pointcut-ref="addAllMethod" /> <aop:after method="printTime" pointcut-ref="addAllMethod" /> </aop:aspect> </aop:config> </beans>
写一个main函数调用一下:
public static void main(String[] args) { ApplicationContext ctx = new ClassPathXmlApplicationContext("aop.xml"); HelloWorld hw1 = (HelloWorld)ctx.getBean("helloWorldImpl1"); HelloWorld hw2 = (HelloWorld)ctx.getBean("helloWorldImpl2"); hw1.printHelloWorld(); System.out.println(); hw1.doPrint(); System.out.println(); hw2.printHelloWorld(); System.out.println(); hw2.doPrint(); }
运行结果为:
CurrentTime = 1446129611993 Enter HelloWorldImpl1.printHelloWorld() CurrentTime = 1446129611993 CurrentTime = 1446129611994 Enter HelloWorldImpl1.doPrint() CurrentTime = 1446129611994 CurrentTime = 1446129611994 Enter HelloWorldImpl2.printHelloWorld() CurrentTime = 1446129611994 CurrentTime = 1446129611994 Enter HelloWorldImpl2.doPrint() CurrentTime = 1446129611994
看到给HelloWorld接口的两个实现类的所有方法都加上了代理,代理内容就是打印时间
基于Spring的AOP使用其他细节
1、增加一个横切关注点,打印日志,Java类为:
public class LogHandler { public void LogBefore() { System.out.println("Log before method"); } public void LogAfter() { System.out.println("Log after method"); } }
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-4.2.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-4.2.xsd"> <bean id="helloWorldImpl1" class="com.xrq.aop.HelloWorldImpl1" /> <bean id="helloWorldImpl2" class="com.xrq.aop.HelloWorldImpl2" /> <bean id="timeHandler" class="com.xrq.aop.TimeHandler" /> <bean id="logHandler" class="com.xrq.aop.LogHandler" /> <aop:config> <aop:aspect id="time" ref="timeHandler" order="1"> <aop:pointcut id="addTime" expression="execution(* com.xrq.aop.HelloWorld.*(..))" /> <aop:before method="printTime" pointcut-ref="addTime" /> <aop:after method="printTime" pointcut-ref="addTime" /> </aop:aspect> <aop:aspect id="log" ref="logHandler" order="2"> <aop:pointcut id="printLog" expression="execution(* com.xrq.aop.HelloWorld.*(..))" /> <aop:before method="LogBefore" pointcut-ref="printLog" /> <aop:after method="LogAfter" pointcut-ref="printLog" /> </aop:aspect> </aop:config> </beans>
测试类不变,打印结果为:
CurrentTime = 1446130273734 Log before method Enter HelloWorldImpl1.printHelloWorld() Log after method CurrentTime = 1446130273735 CurrentTime = 1446130273736 Log before method Enter HelloWorldImpl1.doPrint() Log after method CurrentTime = 1446130273736 CurrentTime = 1446130273736 Log before method Enter HelloWorldImpl2.printHelloWorld() Log after method CurrentTime = 1446130273736 CurrentTime = 1446130273737 Log before method Enter HelloWorldImpl2.doPrint() Log after method CurrentTime = 1446130273737
要想让logHandler在timeHandler前使用有两个办法:
(1)aspect里面有一个order属性,order属性的数字就是横切关注点的顺序
(2)把logHandler定义在timeHandler前面,Spring默认以aspect的定义顺序作为织入顺序
2、我只想织入接口中的某些方法
修改一下pointcut的expression就好了:
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-4.2.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-4.2.xsd"> <bean id="helloWorldImpl1" class="com.xrq.aop.HelloWorldImpl1" /> <bean id="helloWorldImpl2" class="com.xrq.aop.HelloWorldImpl2" /> <bean id="timeHandler" class="com.xrq.aop.TimeHandler" /> <bean id="logHandler" class="com.xrq.aop.LogHandler" /> <aop:config> <aop:aspect id="time" ref="timeHandler" order="1"> <aop:pointcut id="addTime" expression="execution(* com.xrq.aop.HelloWorld.print*(..))" /> <aop:before method="printTime" pointcut-ref="addTime" /> <aop:after method="printTime" pointcut-ref="addTime" /> </aop:aspect> <aop:aspect id="log" ref="logHandler" order="2"> <aop:pointcut id="printLog" expression="execution(* com.xrq.aop.HelloWorld.do*(..))" /> <aop:before method="LogBefore" pointcut-ref="printLog" /> <aop:after method="LogAfter" pointcut-ref="printLog" /> </aop:aspect> </aop:config> </beans>
表示timeHandler只会织入HelloWorld接口print开头的方法,logHandler只会织入HelloWorld接口do开头的方法
3、强制使用CGLIB生成代理
前面说过Spring使用动态代理或是CGLIB生成代理是有规则的,高版本的Spring会自动选择是使用动态代理还是CGLIB生成代理内容,当然我们也可以强制使用CGLIB生成代理,那就是<aop:config>里面有一个"proxy-target-class"属性,这个属性值如果被设置为true,那么基于类的代理将起作用,如果proxy-target-class被设置为false或者这个属性被省略,那么基于接口的代理将起作用
netty底层实现,IO模型,ChannelPipeline的实现和原理
缓存的设计和优化
缓存和数据库一致性同步解决方案
你所在项目的系统架构,谈谈整体实现
消息队列的使用场景
ActiveMQ、RabbitMQ、Kafka的区别