Trans系列

首先,需要安装TransE、TransH、TransR、TransD等知识图谱嵌入模型的Python包,可以使用pip install命令安装相应的包。 以下是TransE知识图谱嵌入模型的Python实现代码: ```python import numpy as np import tensorflow as tf class TransE: def __init__(self, entity_num, relation_num, dim, margin, learning_rate): self.entity_num = entity_num self.relation_num = relation_num self.dim = dim self.margin = margin self.learning_rate = learning_rate self.ent_embeddings = tf.get_variable(name="ent_embeddings", shape=[self.entity_num, self.dim], initializer=tf.contrib.layers.xavier_initializer(uniform=False)) self.rel_embeddings = tf.get_variable(name="rel_embeddings", shape=[self.relation_num, self.dim], initializer=tf.contrib.layers.xavier_initializer(uniform=False)) self.ent_input = tf.placeholder(dtype=tf.int32, shape=[None]) self.rel_input = tf.placeholder(dtype=tf.int32, shape=[None]) self.ent_output = tf.placeholder(dtype=tf.int32, shape=[None]) self.pos_h = tf.nn.embedding_lookup(self.ent_embeddings, self.ent_input) self.pos_t = tf.nn.embedding_lookup(self.ent_embeddings, self.ent_output) self.pos_r = tf.nn.embedding_lookup(self.rel_embeddings, self.rel_input) self.neg_h = tf.placeholder(dtype=tf.int32, shape=[None]) self.neg_t = tf.placeholder(dtype=tf.int32, shape=[None]) self.neg_pos_h = tf.nn.embedding_lookup(self.ent_embeddings, self.neg_h) self.neg_pos_t = tf.nn.embedding_lookup(self.ent_embeddings, self.neg_t) self.predict = tf.reduce_sum(tf.abs(self.pos_h + self.pos_r - self.pos_t), axis=1, keepdims=True) self.loss = tf.reduce_sum(tf.maximum(self.predict - tf.reduce_sum(tf.abs(self.neg_pos_h + self.pos_r - self.pos_t), axis=1, keepdims=True) + self.margin, 0)) self.train_op = tf.train.GradientDescentOptimizer(self.learning_rate).minimize(self.loss) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) def train(self, batch_h, batch_t, batch_r, batch_nh, batch_nt): _, loss = self.sess.run([self.train_op, self.loss], feed_dict={ self.ent_input: batch_h, self.rel_input: batch_r, self.ent_output: batch_t, self.neg_h: batch_nh, self.neg_t: batch_nt }) return loss def test(self, h, t, r): return self.sess.run(self.predict, feed_dict={ self.ent_input: h, self.rel_input: r, self.ent_output: t }) ``` 其中,entity_num表示实体的数量,relation_num表示关系的数量,dim表示嵌入维度,margin表示损失函数中的边际值,learning_rate表示学习率。 TransE模型中的实体和关系都被嵌入到dim维空间中,损失函数通过最小化正样本和负样本之间的距离来学习嵌入向量。 batch_h、batch_t和batch_r分别表示一批训练数据中的头实体、尾实体和关系,batch_nh和batch_nt分别表示一批负样本中的头实体和尾实体。 使用以下代码可以创建一个TransE模型的实例并进行训练: ```python model = TransE(entity_num, relation_num, dim, margin, learning_rate) for epoch in range(num_epochs): for i in range(num_batches): batch_h, batch_t, batch_r, batch_nh, batch_nt = generate_batch(batch_size) loss = model.train(batch_h, batch_t, batch_r, batch_nh, batch_nt) print("Epoch:", epoch, "Loss:", loss) ``` 其中,generate_batch函数用于生成一个batch的训练数据和负样本。训练过程中,每个epoch会迭代num_batches次,每次迭代使用一个batch的数据进行训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>