ThinkPHP笔记——"CSRD"

本文详细介绍了数据库操作中的CURD(创建Create、读取Read、更新Update、删除Delete)方法,包括select、find、getField等读取操作,以及使用add进行创建操作和save进行更新操作的具体实现。

0x00 前言

主要是记录CURD的操作。

目录

  1. 介绍
  2. C操作
  3. U操作
  4. R操作
  5. D操作

0x01 R操作

对数据的读取,Read。

1. select方法

获取所有数据。

$n=new Model('login');
$arr=$n->select();

2.find方法

返回一条数据。
在这里插入图片描述

3.getField

获取一个具体的字段值。
在这里插入图片描述
在这里插入图片描述

0x02 C操作

		$n->use='Panghu';
    	$n->Id='2';
    	$n->p='Queen';
    	$n->add();

在这里插入图片描述

0x03 D 操作

在这里插入图片描述

0x04 U操作

在这里插入图片描述

save返回的内容就是返回的受影响的行数。

内容概要:本文详细介绍了一个基于CNN-GRU与AdaBoost集成的深度学习模型在时间序列预测中的完整项目实现。该模型通过卷积神经网络(CNN)提取局部时空特征,利用门控循环单元(GRU)捕捉长期时序依赖,并结合AdaBoost自适应提升算法增强模型泛化能力与鲁棒性,有效应对非线性、噪声干扰和复杂动态变化的挑战。项目涵盖从数据生成、预处理、模型构建、训练优化到结果可视化和GUI交互界面开发的全流程,提供了完整的代码示例与模块化系统架构设计,支持金融、能源、交通、医疗等多个领域的高精度预测应用。; 适合人群:具备一定Python编程基础和机器学习知识,熟悉深度学习框架(如TensorFlow/Keras)的数据科学家、算法工程师及高校研究人员,尤其适合从事时间序列分析、智能预测系统开发的相关从业者。; 使用场景及目标:①实现高精度时间序列预测,如股票价格、电力负荷、交通流量等;②构建具备强鲁棒性和抗噪能力的工业级预测系统;③开发集成深度学习与集成学习的复合模型以提升预测稳定性;④通过GUI界面实现模型的便捷部署与交互式分析。; 阅读建议:建议读者结合文档中的代码逐步实践,重点关注数据预处理、模型集成机制与可视化模块的设计逻辑,同时可在不同数据集上进行迁移实验,深入理解CNN-GRU与AdaBoost协同工作的原理与优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王嘟嘟_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值