dp经典46道题 (持更)

转载 2018年04月17日 21:42:56

经典题目


★(1) 搬寝室http:
//acm.hdu.edu.cn/showproblem.php?pid=1421 
    状态Dp[i][j]为前i件物品选j对的最优解
    当i
=j*2时,只有一种选择即 Dp[i-2][j-1]+(w[i]-w[i-1])^2

    当i>j*2时,Dp[i][j] = min(Dp[i-1][j],Dp[i-2][j-1]+(w[j]-w[j-1])^2

★ Doing Homework Again http://acm.hdu.edu.cn/showproblem.php?pid=1789 
    这题为贪心,经典题;

    切题角度,对于每个任务要么在截至日期前完成要么被扣分;所以考虑每个人物的完成情况即可;由于每天只能完成一个任务,所以优先考虑分值较大的任务,看看该任务能不能完成,只要能完成,即使提前完成,占了其他任务的完成日期也没关系,因为当前任务的分值最大嘛,而对于能完成的任务能拖多久就拖多久,以便腾出更多时间完成其他任务;       

★ Humble Numbers http://acm.hdu.edu.cn/showproblem.php?pid=1058 
    如果一个数是Humble Number,那么它的2倍,3倍,5倍,7倍仍然是Humble Number
    定义F[i]为第i个Humble Number
    F[n]=min(2*f[i],3*f[j],5*f[k],7*f[L]), i,j,k,L在被选择后相互移动

    (通过此题理解到数组有序特性)    

★ Max Sum Plus Plus http://acm.hdu.edu.cn/showproblem.php?pid=1024
    1. 对于前n个数, 以v[n]为底取m段: 
    当n==m时,Sum[m][n]=Sum[m-1][n-1]+v[n],第n个数独立成段;

当n>m时, Sum[m][n]=max{Sum[m-1][k],Sum[m][n-1]}+v[n]; 其中,m-1<=k<j,解释为,v[n]要么加在Sum[m][n-1],段数不变,要么独立成段接在前n-1个数取m-1段所能构成的最大值后面

     2. 空间的优化:

        通过状态方程可以看出,取m段时,只与取m-1段有关,所以用滚动数组来节省空间

★ Employment Planning http://acm.hdu.edu.cn/showproblem.php?pid=1158 
    状态表示:    Dp[i][j]为前i个月的留j个人的最优解;Num[i]<=j<=Max{Num[i]};
                j>Max{Num[i]}之后无意义,无谓的浪费 记Max_n=Max{Num[i]};
    Dp[i-1]中的每一项都可能影响到Dp[i],即使Num[i-1]<<Num[i]
    所以利用Dp[i-1]中的所有项去求Dp[i];
    对于Num[i]<=k<=Max_n,    当k<j时, 招聘;
                            当k>j时, 解雇  然后求出最小值

    Dp[i][j]=min{Dp[i-1][k…Max_n]+(招聘,解雇,工资);   

★ Doing Homework http://acm.hdu.edu.cn/showproblem.php?pid=1074 
    这题用到位压缩;
    那么任务所有的状态有2^n-1种
    状态方程为:Dp[next]=min{Dp[k]+i的罚时} 其中,next=k+(1<<i),k要取完满足条件的值 k>>i的奇偶性决定状态k

具体实现为: 对每种状态遍历n项任务,如果第i项没有完成,则计算出Dp[next]的最优解    


★Fast Food http://acm.hdu.edu.cn/showproblem.php?pid=1227
    这里需要一个常识:在i到j取一点使它到区间每一点的距离之和最小,这一点为(i+j)/2用图形即可证明;
    Dp[i][j]=max{Dp[i-1][k]+cost[k+1][j]  其中,(i-1)<=k<j状态为前j个position建i个depots   

子序列(可以不连续)问题

(1)最大连续子序列 http://acm.hdu.edu.cn/showproblem.php?pid=1231

    状态方程:sum[i]=max(sum[i-1]+a[i],a[i]);最后从头到尾扫一边
    也可以写成:
                Max
=a[0];
                Current
=0;
                
for(i=0;i<n;i++)
                {
                    
if(Current<0)
                        Current
=a[i];
                    
else
                        Current
+=a[i];
                    
if(Current>Max)
                        Max
=Current;
                }
    
(2)max sum http:
//acm.hdu.edu.cn/showproblem.php?pid=1003 

    同上,最大连续子序列    


(3) Common Subsequence http://acm.hdu.edu.cn/showproblem.php?pid=1159 
    经典DP,最长公共子序列
    Len[i][j]={len[i-1][j-1]+1,(a[i]==b[j]); max(len[i-1][j],len[i][j-1])}
    初始化的优化: 
    for(i=0;i<a;i++)
            for(j=0;j<b;j++)
                len[i][j]=0;
        for(i=1;i<=a;i++) 
            for(j=1;j<=b;j++) 
                if(ch1[i-1]==ch2[j-1]) 
                    len[i][j]=len[i-1][j-1]+1;
                else 

                    len[i][j]=max(len[i-1][j],len[i][j-1]);    

(4)Advanced Fruits http://acm.hdu.edu.cn/showproblem.php?pid=1503 
    最长公共子序列的加强版    

子段问题

(1)Super Jumping  http://acm.hdu.edu.cn/showproblem.php?pid=1087 

    最大递增子段和,状态方程:max_sum[i]= s+a[i]; 其中,1<=i<=n,0<=j<i,a[i]<a[j] && sum[j]>s   

(2)Beans http://acm.hdu.edu.cn/showproblem.php?pid=2845 
    横竖分别求一下不连续的最大子段和;
    状态方程: Sum[i]=max(sum[j])+a[i];其中,0<=j<i-1; 


01 背包

 (1)Robberies  http://acm.hdu.edu.cn/showproblem.php?pid=2955 

    背包;第一次做的时候把概率当做背包(放大100000倍化为整数):在此范围内最多能抢多少钱  最脑残的是把总的概率以为是抢N家银行的概率之和… 把状态转移方程写成了f[j]=max{f[j],f[j-q[i].v]+q[i].money}(f[j]表示在概率j之下能抢的大洋);
    正确的方程是:f[j]
=max(f[j],f[j-q[i].money]*q[i].v)  其中,f[j]表示抢j块大洋的最大的逃脱概率,条件是f[j-q[i].money]可达,也就是之前抢劫过;
    始化为:f[
0]=1,其余初始化为-1  (抢0块大洋肯定不被抓嘛)
(2)最大报销额
  http://acm.hdu.edu.cn/showproblem.php?pid=1864 
    又一个背包问题,对于每张发票,要么报销,要么不报销,0-1背包,张数即为背包;
    转移方程:f[j]
=max(f[j],f[j-1]+v[i]);
    恶心地方:有这样的输入数据 
3 A:100 A:200 A:300
(3) Bone Collector http://acm.hdu.edu.cn/showproblem.php?pid=2602 

    简单0-1背包,状态方程:f[j]=max(f[j],f[j-v[i]]+w[i]),模板题

(4) I NEED A OFFER http://acm.hdu.edu.cn/showproblem.php?pid=1203

    简单0-1背包,题目要求的是至少收到一份Offer的最大概率,我们得到得不到的最小概率即可,状态转移方程:f[j]=min(f[j],f[j-v[i]]*w[i]);其中,w[i]表示得不到的概率,(1-f[j])为花费j元得到Offer的最大概率    

(5)珍惜现在 感恩生活http://acm.hdu.edu.cn/showproblem.php?pid=2191 
    每个物品最多可取n件,多重背包;

    利用二进制思想,把每种物品转化为几件物品,然后就成为了0-1背包    

完全背包

(1)Piggy-Bank http://acm.hdu.edu.cn/showproblem.php?pid=1114 
    完全背包;常规背包是求最大值,这题求最小值;
    只需要修改一下初始化,f[
0]=0,其他赋值为+∞即可;

    状态转移方程:f[i][V]=max{f[i-1][V],f[i-1][V-k*v[i]]+k*w[i]},其中0<=k*v[i]<=V

之前做的关于背包的基础题目

一维背包

  (1)Big Event in HDU http://acm.hdu.edu.cn/showproblem.php?pid=1171 
    一维背包,逐个考虑每个物品带来的影响,对于第i个物品:if(f[j-v[i]]==0) f[j]=0;

    其中,j为逆序循环,且j>=v[i]   (也可以用母函数模板敲出来)

 (2)Coins http://acm.hdu.edu.cn/showproblem.php?pid=2844
    类似于HDU1171 Big Event In HDU,一维DP,可达可不达    

二维背包

(1)FATE http://acm.hdu.edu.cn/showproblem.php?pid=2159 
    二维完全背包,第二层跟第三层的要顺序循环;(0-1背包逆序循环);状态可理解为,在背包属性为 {m(忍耐度), s(杀怪个数)} 里最多能得到的经验值,之前的背包牺牲体积,这个背包牺牲忍耐度跟个数
    注意: 最后扫的时候 外层循环为忍耐度,内层循环为杀怪个数,因为题目要求出剩余忍耐度最大,没有约束杀怪个数,一旦找到经验加满的即为最优解;
    状态转移方程为: f[j][k]
=max(f[j][k],f[j-v[i]][k-1]+w[i]); w[i]表示杀死第i个怪所得的经验值,v[i]表示消耗的忍耐度


 数塔问题
    
(1)数塔http:
//acm.hdu.edu.cn/showproblem.php?pid=2084
    自底向上:dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+v[i][j];    
    
(2)免费馅饼http:
//acm.hdu.edu.cn/showproblem.php?pid=1176
    简单数塔

    自底向上计算:dp[i][j]=max(dp[i+1][j-1],dp[i+1][j],dp[i+1][j+1])+v[i][j];处理边界

(3)Free DIY Tour http://acm.hdu.edu.cn/showproblem.php?pid=1224 
    简单的数塔Dp,考察的是细节的处理;
    Dp[i]
=Max{Dp[j]}+v[i]  其中j->i为通路;
    v[n
+1]有没有初始化,Dp数组有没有初始化
    这题不能用想当然的”最长路”来解决,这好像是个NP问题 解决不了的

矩形

(1)o the Max http://acm.hdu.edu.cn/showproblem.php?pid=1081
    最大子矩阵
    把多维转化为一维的最大连续子序列;(HDU1003)    

(2) Largest Rectangle http://acm.hdu.edu.cn/showproblem.php?pid=1506

    对于每一块木板,Area=height[i]*(j-k+1)  其中,j<=x<=k,height[x]>=height[i];找j,k成为关键,一般方法肯定超时,利用动态规划,如果它左边高度    大于等于它本身,那么它左边的左边界一定满足这个性质,再从这个边界的左边迭代下去
    
for(i=1;i<=n;i++)
        {            
            
while(a[l[i]-1]>=a[i])
                l[i]
=l[l[i]-1];
                
        }
    
    
for(i=n;i>=1;i--)
        {
            
while(a[r[i]+1]>=a[i])
                r[i]
=r[r[i]+1];
        }
    
(3)City Game http:
//acm.hdu.edu.cn/showproblem.php?pid=1505
    1506的加强版,把2维转换化成以每一行底,组成的最大面积;(注意处理连续与间断的情况);

    

 (4)Largest Submatrix http://acm.hdu.edu.cn/showproblem.php?pid=2870 

    枚举a,b,c 最大完全子矩阵,类似于HDU1505 1506 

  (5)Matrix Swapping II http://acm.hdu.edu.cn/showproblem.php?pid=2830 
最大完全子矩阵,以第i行为底,可以构成的最大矩阵,因为该题可以任意移动列,所以只要大于等于height[i]的都可以移动到一起,求出height>=height[i]的个数即可,这里用hash+滚动,先求出height[i]出现的次数,然后逆序扫一遍hash[i]+=hash[i+1]; 

 (6)Monkey And Banana (周赛测试题)    http://acm.hdu.edu.cn/showproblem.php?pid=1069

    状态方程:f[j]=max{f[i]}+v[j];其中,0<=i<=j,w[i]<w[j],h[i]<h[j]   

导弹拦截问题 

(1)最少拦截系统http://acm.hdu.edu.cn/showproblem.php?pid=1257
    两种做法,一是贪心,从后往前贪;二是DP;
    
if(v[i]>max{dp[j]})  (0<=j<len)
    dp[len
++]=v[i];    

 



  命运http://acm.hdu.edu.cn/showproblem.php?pid=2571
    状态方程:sum[i][j]=max{sum[i-1][j],sum[i][k]}+v[i][j];其中1<=k<=j-1,且k是j的因子    
    
 How To Type http:
//acm.hdu.edu.cn/showproblem.php?pid=2577     
    用两个a,b数组分别记录Caps Lock开与关时打印第i个字母的最少操作步骤;
    而对于第i个字母的大小写还要分开讨论:
    Ch[i]为小写: a[i]
=min(a[i-1]+1,b[i-1]+2);不开灯直接字母,开灯则先关灯再按字母,最后保持不开灯;    b[i]=min(a[i-1]+2,b[i-1]+2);不开灯则先按字母再开灯,开灯则Shift+字母(比关灯,按字母再开灯节省步数),最后保持开灯;
    Ch[i]为大写: a[i]
=min(a[i-1]+2,b[i-1]+2); b[i]=min(a[i-1]+2,b[i-1]+1)
    
    最后,b[len
-1]++,关灯嘛O(∩_∩)O~     
    
 
How Many Ways http:
//acm.hdu.edu.cn/showproblem.php?pid=1978 
    两种D法,一是对于当前的点,那些点可达;二是当前点可达那些点;
    明显第二种方法高,因为第一种方法有一些没必要的尝试;
    Dp[i][j]
+=Dp[ii][jj]; (map[ii][jj]>=两点的曼哈顿距离)
    值得优化的地方,每两点的曼哈顿距离可能不止求一次,所以预处理一下直接读取    
    

    
FatMouse’s Speed http:
//acm.hdu.edu.cn/showproblem.php?pid=1160 
    要求:体重严格递增,速度严格递减,原始顺序不定
    按体重或者速度排序,即顺数固定后转化为最长上升子序列问题
    Dp[i]表示为以第i项为底构成的最长子序列,Dp[i]
=max(dp[j])+1,其中0<=j<i , w[i]>w[j]&&s[i]<s[j] 用一个index数组构造最优解:记录每一项接在哪一项后面,最后用max找出最大的dp[0…n],dex记录下标,回溯输出即可    
    
Cstructing Roads http:
//acm.hdu.edu.cn/showproblem.php?pid=1025 
    以p或者r按升序排列以后,问题转化为最长上升子序列
    题目数据量比较大,只能采取二分查找,n
*log(n)的算法
用一个数组记录dp[]记录最长的子序列,len表示长度,如果a[i]
>dp[len], 则接在后面,len++; 否则在dp[]中找到最大的j,满足dp[j]<a[i],把a[i]接在dp[j]后面;    
    
FatMouse Chees http:
//acm.hdu.edu.cn/showproblem.php?pid=1078 
    Dp思想,用记忆化搜索;简单题,处理好边界;    
    

    
龟兔赛跑http:
//acm.hdu.edu.cn/showproblem.php?pid=2059 
未总结    
    

    
Dividing http:
//acm.hdu.edu.cn/showproblem.php?pid=1059 
    一维Dp  Sum为偶数的时候判断Dp[sum/2]可不可达    
    
Human Gene Factions http:
//acm.hdu.edu.cn/showproblem.php?pid=1080 
状态转移方程:
f[i][j]
=Max(f[i-1][j-1]+r[a[i]][b[j]], f[i][j-1]+r[‘-‘][b[j]],f[i-1][j]+r[a[i]][‘-‘]);
    
    
重温世界杯http:
//acm.hdu.edu.cn/showproblem.php?pid=1422 
这题的状态不难理解,状态表示为,如果上一个城市剩下的钱不为负,也就是没有被赶回杭电,则再考虑它对下一个城市的影响;如果上一个城市剩下的前加上当前城市的前大于当前城市的生活费,那么Dp[i]=Dp[i-1]+1;
值得注意的而是这题的数据为100000;不可能以每个城市为起点来一次Dp,时间复杂度为n
^2;足已超时;
我是这样处理的,在保存的数据后面再接上1…n的数据,这样扫描一遍的复杂度为n;再加一个优化,当Dp[i]
==n时,也就是能全部游完所有城市的时候,直接break;

Pearls http:
//acm.hdu.edu.cn/showproblem.php?pid=1300 
    Dp[i]=min{Dp[j]+V},  0<=j<i, V为第j+1类珠宝到第i类全部以i类买入的价值;    
    
Zipper http:
//acm.hdu.edu.cn/showproblem.php?pid=1501
    Dp[i][j]=     
    

    
Warcraft http:
//acm.hdu.edu.cn/showproblem.php?pid=3008
    比赛的时候这道DP卡到我网络中心停电!!!
    因为你没有回血效应,所以你挂掉的时间是一定的;
    用Dp[i][j]表示第i秒剩余j个单位的MP时怪物所剩的血量; 注意必须是剩余,也就是说,初始化的时候,DP[
0][100]=100;  其他Dp[0]状态都不合法,因为没有开战的时候你的MP是满的
    状态转移方程为:
    Dp[i
+1][j-sk[k].mp+x]=min(Dp[i+1][j-sk[k].mp+x],Dp[i][j]+sk[k].at; 释放第K种技能,物理攻击可以看成是at=1,mp=0 的魔法;
    
Regular Words http:
//acm.hdu.edu.cn/showproblem.php?pid=1502 
    F[a][b][c]=F[a-1][b][c]+F[a][b-1][c]+F[a][b][c-1];
    a
>=b>=c;    
    

Python趣味百题-进阶篇

-
  • 1970年01月01日 08:00

Java经典五十道题31-40

【程序31】  题目:将一个数组逆序输出。  1.程序分析:用第一个与最后一个交换。 【程序32】  题目:取一个整数a从右端开始的4~7位。  程序分析:可以这样考虑:  ...
  • u010623699
  • u010623699
  • 2017-06-30 11:14:38
  • 271

50道经典SQL语句题目及答案(使用Oracle语法)

/* Student(S#,Sname,Sage,Ssex)学生表 Course(C#,Cname,T#)课程表 SC(S#,C#,score)成绩表 Teacher(T#,Tname)教师表...
  • root1113
  • root1113
  • 2014-04-26 21:56:05
  • 2521

java基础50道经典练习题及答案.doc

  • 2015年04月03日 16:27
  • 317KB
  • 下载

javaj经典程序编程50题

比较经典的java编程题目50题,这是我花费一段时间码上去的代码,全部题目都有我的注释,希望对大家有点帮助 编程题目对锻炼逻辑思维是很有帮助的,合格的程序员应该具备基本的逻辑思维! 也欢迎大家指导点评...
  • wenzhi20102321
  • wenzhi20102321
  • 2016-08-22 11:03:52
  • 19986

JAVA基础编程练习题--50道

題目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一 对兔子,假如兔子都不死,问每个月的兔子总数为多少? 刚开始真的无从下手,这么难的,怎么可以说...
  • anlidengshiwei
  • anlidengshiwei
  • 2015-07-06 15:18:51
  • 2597

100道Java经典面试题及答案解析

100道Java经典面试题及答案解析
  • dajiangtai007
  • dajiangtai007
  • 2017-03-21 10:13:12
  • 2232

状压DP入门题集锦

POJ 3254 Corn Fields 题意: 一块n*m的田,1表示这个地方可以种植,0代表这个地方不能种植。植物种植还必须满足两株植物不能相邻(横竖都不行)。问共有几种种植方法,而且当...
  • Codeblocksm
  • Codeblocksm
  • 2016-03-05 10:52:18
  • 527

75道经典逻辑思维题及答案

75道逻辑思维题及答案 【1】假设有一个池塘,里面有无穷多的水。现有2个空水壶,容积分别为5升和6升。问题是如何只用这2个水壶从池塘里取得3升的水。 【2】周雯的妈妈是豫林水泥厂的化验员。...
  • dongwuming
  • dongwuming
  • 2013-08-16 16:31:16
  • 3856

100道经典Java面试题及答案

面向对象编程(OOP) Java是一个支持并发、基于类和面向对象的计算机编程语言。下面列出了面向对象软件开发的优点: 代码开发模块化,更易维护和修改。代码复用。增强代码的可靠性和灵活性。增加代码的...
  • gy30482
  • gy30482
  • 2015-10-07 15:36:16
  • 1815
收藏助手
不良信息举报
您举报文章:dp经典46道题 (持更)
举报原因:
原因补充:

(最多只允许输入30个字)