题目描述
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例1
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
示例2
输入:nums = []
输出:[]
示例3
输入:nums = [0]
输出:[]
解法一:哈希法
思路
两层for循环就可以确定 a 和b 的数值了,可以使用哈希法来确定 0-(a+b) 是否在 数组里出现过,其实这个思路是正确的,但是我们有一个非常棘手的问题,就是题目中说的不可以包含重复的三元组。
把符合条件的三元组放进vector中,然后在去去重,这样是非常费时的,很容易超时,也是这道题目通过率如此之低的根源所在。
去重的过程不好处理,有很多小细节,如果在面试中很难想到位。
时间复杂度可以做到O(n^2),但还是比较费时的,因为不好做剪枝操作。
大家可以尝试使用哈希法写一写,就知道其困难的程度了。
解法二:双指针
这道题目使用双指针法 要比哈希法高效一些」,那么来讲解一下具体实现的思路。
大体思想如下:
拿这个nums数组来举例,首先将数组排序,然后有一层for循环,i从下表0的地方开始,同时定一个下表left 定义在i+1的位置上,定义下表right 在数组结尾的位置上。
依然还是在数组中找到 abc 使得a + b +c =0,我们这里相当于 a = nums[i] b = nums[left] c = nums[right]。
接下来如何移动left 和right呢, 如果nums[i] + nums[left] + nums[right] > 0 就说明 此时三数之和大了,因为数组是排序后了,所以right下表就应该向左移动,这样才能让三数之和小一些。
如果 nums[i] + nums[left] + nums[right] < 0 说明 此时 三数之和小了,left 就向右移动,才能让三数之和大一些,直到left与right相遇为止。
下面给出Java版本的代码
Java代码
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
List<List<Integer>> res = new ArrayList<>();
Arrays.sort(nums);
for(int i = 0; i < nums.length; i++) {
if(nums[i] > 0) { // a大于 0,后面的数都比它大,肯定不成立了
return res;
}
if(i > 0 && nums[i] == nums[i-1]) // a去重
{
continue;
}
int left = i+1;
int right = nums.length-1;
while(left < right) {
if(nums[i]+nums[left]+nums[right] == 0) {
List<Integer> list = new ArrayList<>();
list.add(nums[i]);
list.add(nums[left]);
list.add(nums[right]);
res.add(list);
left++;
right--;
while(left < right && nums[left] == nums[left-1]) { // b去重
left++;
}
while(left < right && nums[right] == nums[right+1]){ // c去重
right--;
}
}
else if(nums[i]+nums[left]+nums[right] > 0) {
right--;
} else {
left++;
}
}
}
return res;
}
}
复杂度分析
时间复杂度:O(n^2), 最外层的for循环和while循环嵌套,故时间复杂度为O(n^2)
空间复杂度:O(logn),排序需要额外的O*(logn)的空间