[P1970][NOIP2013]花匠

本文介绍了一种通过算法优化花坛布局的方法。该算法读取输入文件中的花高数据,去除重复高度的花,并找出所有局部最高点的位置。最终算法会计算并输出最优布局所需的最少操作数。

原题链接

听说正解是DP

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<climits>
#include<queue>
#include<vector>
#include<ctime>
using namespace std;

int n,i,cnt,h[100005],top,pos[100005],ans;

int main()
{
    freopen("flower.in","r",stdin);
    freopen("flower.out","w",stdout);       

    scanf("%d",&n);

    for(i=1;i<=n;i++)
    {
        cnt++;
        scanf("%d",&h[cnt]);

        if(h[cnt]==h[cnt-1])
        {
            h[cnt]=0;
            cnt--;      
        }   
    }

    for(i=1;i<=cnt;i++)
        if(h[i]>h[i-1]&&h[i]>h[i+1])
        {
            top++;
            pos[top]=i;
        }

    ans=top*2;

    if(pos[top]==cnt) ans--;
    if(pos[1]!=1) ans++;

    printf("%d\n",ans);

    return 0;
}
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)内容概要:本文档聚焦于五种优化算法(A、HO、CP、GOOSE、NRBO)与BP神经网络结合的回归预测性能比较研究,所有内容均基于Matlab代码实现。研究属于创新未发表成果,涵盖机器学习、深度学习、智能优化算法等多个科研方向的应用实例,尤其在时序预测、回归分析等领域。文档还列举了大量相关课题,如微电网多目标优化调度、储能选址定容、轴承故障诊断等,展示了广泛的科研应用场景和技术实现手段。; 适合人群:具备一定Matlab编程基础,从事科研或工程应用的研究人员,尤其是关注智能优化算法与神经网络结合应用的硕士、博士研究生及科研工作者。; 使用场景及目标:①用于科研项目中对比不同优化算法对BP神经网络回归预测性能的影响;②为相关领域如能源调度、故障诊断、负荷预测等提供算法实现参考与代码支持;③辅助学术论文撰写与实验验证。; 阅读建议:此资源以实际Matlab代码为核心,建议读者结合文档中提供的网盘链接获取完整代码资源,并在实践中运行和调试代码,深入理解各算法的实现细节与优化机制。同时建议按目录顺序系统学习,以便构建完整的知识体系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值