Python 列表有一个内置的 list.sort() 方法可以直接修改列表。还有一个 sorted() 内置函数,它会从一个可迭代对象构建一个新的排序列表。来看看这两个函数到底怎么用吧!
基本用法
对一个列表进行简单升序排序,使用sorted():
>>> sorted([5, 2, 3, 1, 4])
[1, 2, 3, 4, 5]
另一种方法是使用 list.sort() 方法,它会直接修改原列表(并返回 None 以避免混淆),通常来说它不如 sorted() 方便 ——— 但如果你不需要原列表,它会更有效率。
>>> a = [5, 2, 3, 1, 4]
>>> a.sort()
>>> a
[1, 2, 3, 4, 5]
另外一个区别是, list.sort() 方法只是为列表定义的,而 sorted() 函数可以接受任何可迭代对象。
>>> sorted({1: ‘D’, 2: ‘B’, 3: ‘B’, 4: ‘E’, 5: ‘A’})
[1, 2, 3, 4, 5]
key=?
list.sort() 和 sorted() 都有一个 key 形参用来指定在进行比较前要在每个列表元素上调用的函数(或其他可调用对象)。
例如,下面是一个不区分大小写的字符串比较:
>>> sorted(“This is a test string from Andrew”.split(), key=str.lower)
[‘a’, ‘Andrew’, ‘from’, ‘is’, ‘string’, ‘test’, ‘This’]
key 形参的值应该是个函数(或其他可调用对象),它接受一个参数并返回一个用于排序的键。 这种机制速度很快,因为对于每个输入记录只会调用一次键函数。
一种常见的模式是使用对象的一些索引作为键对复杂对象进行排序。例如:
student_tuples = [
('john', 'A', 15),
('jane', 'B', 12),
('dave', 'B', 10),]
print(sorted(student_tuples, key=lambda student: student[2])) # 使用年龄排序
结果为:
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
同样的技术也适用于具有命名属性的对象。例如:
class Student:
def __init__(self, name, grade, age):
self.name = name
self.grade = grade
self.age = age
def __repr__(self):
return repr((self.name, self.grade, self.age))
student_objects = [
Student('john', 'A', 15),
Student('jane', 'B', 12),
Student('dave', 'B', 10),
]
print(sorted(student_objects, key=lambda student: student.age)) # 按年龄排序
结果为:
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
Operator 模块函数
通过lambab表达式获取特定的键非常常见,因此 Python 提供了便利功能,使访问器功能更容易,更快捷。 operator 模块有 itemgetter() 、 attrgetter() 和 methodcaller() 函数。
使用这些函数,上述示例变得更简单,更快捷:
from operator import itemgetter, attrgetter
class Student:
def __init__(self, name, grade, age):
self.name = name
self.grade = grade
self.age = age
def __repr__(self):
return repr((self.name, self.grade, self.age))
student_objects = [
Student('john', 'A', 15),
Student('jane', 'B', 12),
Student('dave', 'B', 10),
]
student_tuples = [
('john', 'A', 15),
('jane', 'B', 12),
('dave', 'B', 10),]
print(sorted(student_tuples, key=itemgetter(0))) # 按元组中0号元素(name)排序
# [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
print(sorted(student_objects, key=attrgetter('age'))) # 按age排序
# [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
Operator 模块功能允许多级排序。 例如,按 grade 排序,然后按 age 排序:
print(sorted(student_tuples, key=itemgetter(1,2)))
#[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
print(sorted(student_objects, key=attrgetter('grade', 'age')))
#[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
升序和降序
list.sort() 和 sorted() 接受布尔值的 reverse 参数。这用于标记降序排序。 例如,要以反向 age 顺序获取学生数据:
print(sorted(student_tuples, key=itemgetter(2), reverse=True))
#[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
print(sorted(student_objects, key=attrgetter('age'), reverse=True))
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
排序的稳定性
排序保证是 稳定 的。 这意味着当多个记录具有相同的键值时,将保留其原始顺序。
>>> data = [(‘red’, 1), (‘blue’, 1), (‘red’, 2), (‘blue’, 2)]
>>> sorted(data, key=itemgetter(0))
[(‘blue’, 1), (‘blue’, 2), (‘red’, 1), (‘red’, 2)]
注意 blue 的两个记录如何保留它们的原始顺序,以便 (‘blue’, 1) 保证在 (‘blue’, 2) 之前。
这允许你在一系列排序步骤中构建复杂的排序。例如,要按 grade 降序然后 age 升序对学生数据进行排序,请先 age 排序,然后再使用 grade 排序:
>>> s = sorted(student_objects, key=attrgetter(‘age’)) # sort on secondary key
>>> sorted(s, key=attrgetter(‘grade’), reverse=True) # now sort on primary key, descending
[(‘dave’, ‘B’, 10), (‘jane’, ‘B’, 12), (‘john’, ‘A’, 15)]
这可以被抽象为一个包装函数,该函数能接受一个列表以及字段和顺序的元组,以对它们进行多重排序。
from operator import attrgetter
class Student:
def __init__(self, name, grade, age):
self.name = name
self.grade = grade
self.age = age
def __repr__(self):
return repr((self.name, self.grade, self.age))
def multisort(xs, specs):
for key, reverse in reversed(specs):
xs.sort(key=attrgetter(key), reverse=reverse)
return xs
student_objects = [
Student('john', 'A', 15),
Student('jane', 'B', 12),
Student('dave', 'B', 10),
]
print(multisort(list(student_objects), (('grade', True), ('age', False))))
本文详细介绍了Python中的排序方法,包括sorted()函数和list.sort()方法的基本用法,以及如何使用key参数进行复杂排序。同时,还介绍了如何利用operator模块简化排序过程,并展示了如何实现多重排序。

3598

被折叠的 条评论
为什么被折叠?



