嵌入式与人工智能关系_嵌入式人工智能的发展趋势

嵌入式与人工智能关系_嵌入式人工智能的发展趋势

 

  所谓嵌入式人工智能,就是设备无须联网通过云端数据中心进行大规模计算去实现人工智能,而是在本地计算,在不联网的情况下就可以做实时的环境感知、人机交互、决策控制。那么嵌入式与人工智能关系是什么?嵌入式人工智能的发展趋势你知道吗?本文主要详细嵌入式与人工智能,具体的跟随小编一起来了解一下。

  嵌入式与人工智能关系

  人工智能不可能没有嵌入式,人工智能的领域庞大涵盖学科众多,应用范围也很多。人工智能与嵌入式系统的关系,可用苏轼《题西林壁》的诗句来形容,即“横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中”。长期以来,形形色色的人工智能就在我的周围,我们却视而不见。可以说嵌入式开启了人工智能的进程,人工智能的终极目的是实现人类智力的替代,人的智力有“思维”和“行为”两种方式,思维是大脑独立的思考,行为是个体与客观世界的交互。

  现在的人工智能大多属于前者,siri、阿尔法狗都是典型代表。要实现人工智能的行为,必须使用嵌入式系统,这就是现在所说的强人工智能与弱人工智能。具有行为能力的“弱人工智能”就是智能化工具,即MCU基础上的嵌入式应用系统,已有40多年历史。可以骄傲地说,单片机、嵌入式系统开启了人工智能的历史进程,我们所做的一切都是人工智能的那些事儿。人工智能是基础的技术资源,它有着改变人们的思维与生活方式、变革社会的巨大潜力。从更大的格局看,万物智联时代正在到来,未来将从“以设备为中心”进步为“以用户为中心”、“以数据为中心”。

  业界普遍认为人工智能的三个发展阶段包括感知智能、认知智能和通用人工智能(AGI)。感知指语音、语言、图像、手势等;认知指理解、记忆、知识、推理、规划、决策、创造等;通用人工智能指类似人类的思维。其中,感知是人机交互中最重要的一环,为人工智能提供数据基础。这三个阶段需要循序渐进。目前阶段,人工智能的目标并不是让机器模拟人的全部行为,而是在某些特定领域超过人类专家的水平、有能力高效地解决专业问题,从而对人类提供实用的服务。

  小编觉得在人工智能时代,强大的算法也不会拘泥于PC机实现,需要落地的话,就要依赖嵌入式承载。嵌入式在智能手机上的应用已经足以证明,未来出现的机器人一定会使用嵌入式的技术,所以说对于嵌入式系统的需求已经非常迫切,期待能够出现颠覆智能手机的嵌入式便携移动终端。

  嵌入式与人工智能关系_嵌入式人工智能的发展趋势

  嵌入式系统开启人工智能的历史进程

  人工智能与嵌入式系统的关系,可用苏轼《题西林壁》的诗句来形容,即“横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中”。长期以来,形形色色的人工智能就在我的周围,我们却视而不见。为什么会出现这种现象?则要从两个领域的人工智能说起。

  所说的人工智能,就是以人工方式实现人类智力的替代。人类智力有“思维”与“行为”两种方式。“思维”是大脑的独立思考,“行为”是人类个体与客观世界的交互状态,除了思考还要有对外部世界的感知与控制。AlphaGo属于前者,它与李世石、柯洁对决,还要有代理人将它的思维能力转化成对决的下棋行为。实现人工智能的行为方式,则非嵌入式系统莫属。对此,人工智能领域人士,普遍将这两种人工智能定义成“强人工智能”与“弱人工智能”。

  AlphaGo之父哈萨比斯在剑桥大学演讲中则用“通用人工智能”与“狭义人工智能”来区分。总之,所有专家都认可具有行为能力的“弱人工智能”。

  具有行为能力的“弱人工智能”就是智能化工具,即MCU基础上的嵌入式应用系统,已有40多年历史。无怪乎约翰•麦卡锡这位50年代提出人工智能概念的学者,感叹于我们日常生活中每天都在使用人工智能,抱怨于“一旦一样东西用人工智能实现了,人们就不再叫它人工智能了”。

  可以骄傲地说,单片机、嵌入式系统开启了人工智能的历史进程,我们所做的一切都是人工智能的那些事儿。

  嵌入式与人工智能关系_嵌入式人工智能的发展趋势

  嵌入式人工智能的的发展趋势

  1、嵌入式人工智能于各行业垂直领域应用具有巨大的潜力

  嵌入式人工智能市场在零售、交通运输和自动化、制造业及农业等各行业垂直领域具有巨大的潜力。而驱动市场的主要因素,是嵌入式人工智能技术在各种终端用户垂直领域的应用数量不断增加,尤其是改善对终端消费者服务。当然嵌入式人工智能市场要起来也受到IT基础设施完善、智能手机及智能穿戴式设备的普及。其中,以自然语言处理(NLP)应用市场占嵌入式人工智能市场很大部分。随着自然语言处理的技术不断精进而驱动消费者服务的成长,还有:汽车信息通讯娱乐系统、嵌入式人工智能机器人及支持嵌入式人工智能的智能手机等领域。

  2、嵌入式人工智能导入医疗保健行业维持高速成长

  由于医疗保健行业大量使用大数据及嵌入式人工智能,进而精准改善疾病诊断、医疗人员与患者之间人力的不平衡、降低医疗成本、促进跨行业合作关系。此外嵌入式人工智能还广泛应用于临床试验、大型医疗计划、医疗咨询与宣传推广和销售开发。嵌入式人工智能导入医疗保健行业从2016年到2022年维持很高成长,预计从2016年的6.671亿美元达到2022年的79.888亿美元年均复合增长率为52.68%。

  3、嵌入式人工智能取代屏幕成为新UI / UX接口

  过去从PC到手机时代以来,用户接口都是透过屏幕或键盘来互动。随着智能喇叭(Smart Speaker)、虚拟/增强现实(VR/AR)与自动驾驶车系统陆续进入人类生活环境,加速在不需要屏幕的情况下,人们也能够很轻松自在与运算系统沟通。这表示着嵌入式人工智能透过自然语言处理与机器学习让技术变得更为直观,也变得较易操控,未来将可以取代屏幕在用户接口与用户体验的地位。嵌入式人工智能除了在企业后端扮演重要角色外,在技术接口也可承担更复杂角色。例如:使用视觉图形的自动驾驶车,透过人工神经网络以实现实时翻译,也就是说,嵌入式人工智能让接口变得更为简单且更有智能,也因此设定了未来互动的高标准模式。

  嵌入式与人工智能关系_嵌入式人工智能的发展趋势

  4、未来手机芯片一定内建嵌入式人工智能运算核心

  现阶段主流的ARM架构处理器速度不够快,若要进行大量的图像运算仍嫌不足,所以未来的手机芯片一定会内建嵌入式人工智能运算核心。正如,苹果将3D感测技术带入iPhone之后,Android阵营智能手机将在明年(2017)跟进导入3D感测相关应用。

  5、嵌入式人工智能芯片关键在于成功整合软硬件

  嵌入式人工智能芯片的核心是半导体及算法。嵌入式人工智能硬件主要是要求更快指令周期与低功耗,包括GPU、DSP、ASIC、FPGA和神经元芯片,且须与深度学习算法相结合,而成功相结合的关键在于先进的封装技术。总体来说GPU比FPGA快,而在功率效能方面FPGA比GPU好,所以嵌入式人工智能硬件选择就看产品供货商的需求考虑而定。例如,苹果的Face ID脸部辨识就是3D深度感测芯片加上神经引擎运算功能,整合高达8个组件进行分析,分别是红外线镜头、泛光感应组件、距离传感器、环境光传感器、前端相机、点阵投影器、喇叭与麦克风。苹果强调用户的生物识别数据,包含:指纹或脸部辨识都以加密形式储存在iPhone内部,所以不易被窃取。

  6、嵌入式人工智能自主学习是终极目标

  嵌入式人工智能“大脑”变聪明是分阶段进行,从机器学习进化到深度学习,再进化至自主学习。目前,仍处于机器学习及深度学习的阶段,若要达到自主学习需要解决四大关键问题。首先,是为自主机器打造一个嵌入式人工智能平台;还要提供一个能够让自主机器进行自主学习的虚拟环境,必须符合物理法则,碰撞,压力,效果都要与现实世界一样;然后再将嵌入式人工智能的“大脑”放到自主机器的框架中;最后建立虚拟世界入口(VR)。目前,NVIDIA推出自主机器处理器Xavier,就在为自主机器的商用和普及做准备工作。

  7、最完美的架构是把CPU和GPU(或其他处理器)结合起来

  未来,还会推出许多专门的领域所需的超强性能的处理器,但是CPU是通用于各种设备,什么场景都可以适用。所以,最完美的架构是把CPU和GPU(或其他处理器)结合起来。例如,NVIDIA推出CUDA计算架构,将专用功能ASIC与通用编程模型相结合,使开发人员实现多种算法。

  8、AR成为嵌入式人工智能的眼睛,两者是互补、不可或缺

  未来的嵌入式人工智能需要AR,未来的AR也需要嵌入式人工智能,可以将AR比喻成嵌入式人工智能的眼睛。为了机器人学习而创造的在虚拟世界,本身就是虚拟现实。还有,如果要让人进入到虚拟环境去对机器人进行训练,还需要更多其它的技术。展望未来,随着嵌入式人工智能、物联网、VR/AR、5G等技术成熟,将带动新一波半导体产业的30年荣景,包括:内存、中央处理器、通讯与传感器四大芯片,各种新产品应用芯片需求不断增加,以中国在半导体的庞大市场优势将会在全球扮演关键的角色

已标记关键词 清除标记
相关推荐
韦东山老师为啥要录升级版嵌入式视频? 200x年左右,嵌入式Linux在全世界、在中国刚刚兴起。 我记得我2005年进入中兴时,全部门的人正在努力学习Linux。 在2008年,我写了一本书《嵌入式Linux应用开发完全手册》。 它的大概内容是:裸机、U-boot、Linux内核、Linux设备驱动。 那时还没有这样讲解整个系统的书, 芯片厂家Linux开发包也还不完善,从bootloader到内核,再到设备驱动都不完善。 有全系统开发能力的人也很少。 于是这书也就恰逢其时,变成了畅销书。 我也根据这个思路录制了视频:裸机、U-boot、Linux内核、Linux设备驱动。 收获些许名声,带领很多人进入Linux世界。11年过去了,嵌入式Linux世界发生了翻天覆地的变化 ① 基本系统能用 芯片厂家都会提供完整的U-boot、Linux内核、芯片上硬件资源的驱动。 方案厂家会做一些定制,比如加上某个WIFI模块,会添加这个WIFI模块的驱动。 你可以使用厂家的原始方案,或是使用/借鉴方案商的方案,做出一个“能用”的产品。 ② 基础驱动弱化;高级驱动专业化 基础的驱动,比如GPIO、UART、SPI、I2C、LCD、MMC等,有了太多的书籍、视频、示例代码,修修改改总是可以用的。 很多所谓的驱动工程师,实际上就是“调参工程师”。 我们群里有名的火哥,提出了一个概念:这些驱动就起一个“hardware enable”的作用。 高级的驱动,比如USB、PCIE、HDMI、MIPI、GPU、WIFI、蓝牙、摄像头、声卡。 体系非常复杂,很少有人能讲清楚,很多时候只是一笔带过。 配置一下应用层工具就了事,能用就成。 这些高级驱动,工作中需要专门的人来负责,非常专业。 他们是某一块的专家,比如摄像头专家、音频专家。 ③ 项目为王 你到一个公司,目的是把产品做出来,会涉及APP到内核到驱动全流程。 中小公司玩不起华为中兴的配置,需要的是全面手。 大公司里,只负责很小很小一块的镙丝钉,位置也不太稳固啊。 所以,如果你不是立志成为某方面的专家,那就做一个全栈工程师吧。 ④ 调试很重要 都说代码是3分写7分调,各种调试调优技术,可以为你的升职加薪加一把火。 基于上述4点,我录制的全新视频将有这些特点: 1. 快速入门, 2. 实战项目, 3. 驱动大全, 4. 专题, 5. 授人以渔, 6. 要做任务 另外,我们会使用多款芯片同时录制,先讲通用的原理,再单独讲各个板子的操作。 这些芯片涵盖主流芯片公司的主流芯片,让你学习工作无缝对接。 1.快速入门 入门讲究的是快速,入门之后再慢慢深入, 特别是对于急着找工作的学生,对于业余时间挑灯夜读的工作了的人,一定要快! 再从裸机、U-boot、内核、驱动这样的路线学习就不适合了,时间就拉得太长了。 搞不好学了后面忘了前面。 并且实际工作中并不需要你去弄懂U-boot,会用就行:U-boot比驱动还复杂。 讲哪些内容? 怎么讲呢? 混着讲 比如先讲LED APP,知道APP怎么调用驱动,再讲LED硬件原理和裸机,最后讲驱动的编写。 这样可以快速掌握嵌入式Linux的整套开发流程, 不必像以前那样光学习裸机就花上1、2个月。 而里面的裸机课程,也会让你在掌握硬件操作的同时,把单片机也学会了。 讲基础技能 中断、休眠-唤醒、异步通知、阻塞、内存映射等等机制,会配合驱动和APP来讲解。 这些技能是嵌入式Linux开发的基础。 而这些驱动,只会涉及LED、按制、LCD等几个驱动。 掌握了这些输入、输出的驱动和对应的APP后,你已经具备基本的开发能力了。 讲配置 我们从厂家、从方案公司基本上都可以拿到一套完整的开发环境,怎么去配置它? 需要懂shell和python等配置脚本。 效果效率优先 以前我都是现场写代码、现场写文档,字写得慢,降低了学习效率。 这次,效果与效率统一考虑,不再追求所有东西都现场写。 容易的地方可先写好代码文档,难的地方现场写。 2.实战项目 会讲解这样的涉及linux网关/服务器相关项目(不限于,请多提建议):                      定位为:快速掌握项目开发经验,丰满简历。 涉及的每一部分都会讲,比如如果涉及蓝牙,在这里只会讲怎么使用,让你能写出程序;如果要深入,可以看后面的蓝牙专题。 3. 驱动大全 包括基础驱动、高级驱动。 这些驱动都是独立成章,深入讲解。 虽然基础驱动弱化了,但是作为Linux系统开发人员,这是必备技能,并且从驱动去理解内核是一个好方法。 在讲解这些驱动时,会把驱动的运行环境,比如内核调度,进程线程等概念也讲出来,这样就可以搭建一个知识体系。 没有这些知识体系的话,对驱动的理解就太肤浅了,等于在Linux框架下写裸机,一叶障目,不见泰山。 定位为:工具、字典,用到再学习。 4. 专题 想深入学习的任何内容,都可独立为专题。 比如U-boot专题、内核内存管理专题、systemtap调试专题。
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页