语音信号特征提取——梅尔频率倒谱系数MFCC(含Matlab代码)

本文详细介绍了梅尔频率倒谱系数(MFCC)的概念,包括倒谱、梅尔频率及其在语音信号处理中的应用。MFCC是通过一系列步骤从语音信号中提取特征,包括预加重、分帧、傅里叶变换、梅尔滤波器组、对数压缩和离散余弦变换等。提供了一个由Kamil Wojcicki编写的MATLAB代码示例,以帮助理解和实现MFCC计算。
摘要由CSDN通过智能技术生成

梅尔频率倒谱系数(Mel-Frequency Cepstral Coefficients,MFCCs)

这个词涉及到梅尔频率和倒谱,所以先分别了解这俩词的意思。

1. 倒谱(Cepstral):

(这个词是频谱spectrum的前面四个字母顺序倒过来,所以和频谱有一定联系)倒谱是一种信号的频谱经过对数运算后再进行傅里叶反变换得到的谱。其计算过程可用下面的框图表示:

因为语音信号实际上是一个卷性信号(把声道看作一个线性时不变系统,声音的产生则为一个激励通过这个系统),记原时域信号为,经过DFT变换后得到的信号为,对两边同时取幅度的对数,则有

再对两边进行反傅里叶变换则可以得到倒谱:。可以发现原来的时域卷性信号变成了时域加性信号。这是一种同态信号处理,可以将非线性问题转化为线性问题。

2. 梅尔频率:

梅尔频率是一种给予人耳对等距的音高变化的感官判断而定的非线性频率刻度。它与频率赫兹的关系为

从频率变换到梅尔频率可以通过一组三角滤波器实现:

利用梅尔频率刻度的滤波器组对频域信号进行切分&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值