特征值、特征根、本征值

线性代数

狭义特征值问题 Ax = λx  
广义特征值问题 Ax = λBx
λ为特征值,x为λ对应的特征向量

在求解特征值时,转化为求解特征多项式|A-λE|=0的特征根

λ在Ax = λx中称为特征值,在 |A-λE|=0中 称为特征根

微分方程

在求解n阶微分方程或差分方程时,先求其对应的特征方程的根(简称特征根)
如二阶微分方程x'' + px' + qx = 0 对应的特征方程  r^2 + p*r + q = 0

控制工程

在控制方程中也有特征根
二阶微分方程x'' + px' + qx = 0 经过拉氏变换 得到特征方程  s^2 + p*s + q = 0

特征方程就是传递函数的分母,特征方程的根称为极点

闭环传递函数 Y(s)/X(s) = G(s)/(1+G(s)*H(s))

闭环传递函数的特征方程为  1+G*H=0,特征根也称为该传递函数的极点

数学物理方程

本征函数与本征值
τ(x) = λx,x称为本征函数,λ称为本征值

其实本征值与特征值一个意思,英文都是eigenvalue

τ()是一个变换,τ(x)可以是Ax,A为矩阵;τ(x)也可以是x''等

我想是不是存在更广义的本征值与本征函数呢 即τ(x) = λ*v(x),τ()与v()都是变换?

©️2020 CSDN 皮肤主题: 像素格子 设计师:CSDN官方博客 返回首页