按照排序方法将排序分为五类:
一类:插入类排序:直接插入排序,折半插入排序,希尔排序
二类:交换类排序:快排,冒泡排序
三类:选择类排序:简单选择排序,堆排
四类 :归并类排序:二路归并排序
五类:基数类排序
从时间复杂度上来讲
平均时间复杂度为O(N^2)
冒泡排序,直接插入排序,简单选择排序,折半插入排序
平均时间复杂度为O()
快排,归并排序,堆排
最差时间复杂度除快排为O(N^2)以外 其余都与平均时间复杂度一致
空间复杂度上来说
快排为O(l
),归并排序为O(N),基数排序为O(Rd),其余都是O(1)
稳定性:
除简单选择排序,快排,希尔排序,堆排是不稳定的,其余都为稳定
tips:
1. 经过一躺排序,能够保证一个关键字在最终位置,这样的排序是交换类的两种(起泡和快速),选择类的两种(简单选择,堆)
2.排序算法的关键词比较次数与原始序列无关的是--------折半插入和简单选择排序。
3.排序算法的排序躺数与原始序列相关-----交换类排序。
贴个快排和堆排的代码
#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
int t=0;
void InsertSort(int R[],int n){
int i,j;
int temp;
for(int i=0;i<n;++i){
temp=R[i];
j=i-1;
while(j>=0&&temp<R[j]){
R[j+1]=R[j];
--j;
t++;
}
R[j+1]=temp;
/* for(int q=0;q<n;q++){
cout<<R[q]<<" ";
}
cout<<endl;
*/
}
}
void QuickSort(int R[],int low,int high){
int temp;
int i=low,j=high;
if(low<high){
temp=R[low];
while(i<j){
while(j>i&&R[j]>=temp) --j;
if(i<j){
R[i]=R[j];
++i;
}
while(i<j&&R[i]<temp) ++i;
if(i<j){
R[j]=R[i];
--j;
}
}
R[i]=temp;
QuickSort(R,low,i-1);
QuickSort(R,i+1,high);
}
}
//生成树
void sift(int R[],int low,int high){
int i=low,j=2*i;
int temp=R[i];
while(j<=high){
if(j<high&&R[j]<R[j+1]){
++j;
}
if(temp<R[j]){
R[i]=R[j];
i=j;
j=2*i;
}
else
break;
}
R[i]=temp;
}
void heapSort(int R[],int n){
int i;
int temp;
for(int i=n/2;i>=0;--i)
sift(R,i,n);
for(i=n;i>=0;--i){
temp=R[0];
R[0]=R[i];
R[i]=temp;
sift(R,0,i-1);
}
}
int main(){
int n;
cin>>n;
int R[105];
for(int i=0;i<n;i++){
cin>>R[i];
}
int q;
cout<<"堆排请输入1"<<endl;
cout<<"快排输入2"<<endl;
cin>>q;
if(q==1){
heapSort(R,n);
}
else if(q==2){
QuickSort(R,0,n-1);
}
//InsertSort(R,n); 直接排序;
//折半插入 前提是有序的序列,向其中添加新的数字
//QuickSort 快排 时间复杂度为nlogn 最坏时间复杂度为 n^2, 空间复杂度为 log2(N);
for(int i=0;i<n;i++){
cout<<R[i]<<" ";
}
return 0;
}

被折叠的 条评论
为什么被折叠?



