给定一个插入序列就可以唯一确定一棵二叉搜索树。然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到。例如分别按照序列{2, 1, 3}和{2, 3, 1}插入初始为空的二叉搜索树,都得到一样的结果。于是对于输入的各种插入序列,你需要判断它们是否能生成一样的二叉搜索树。
输入格式:
输入包含若干组测试数据。每组数据的第1行给出两个正整数N (≤10)和L,分别是每个序列插入元素的个数和需要检查的序列个数。第2行给出N个以空格分隔的正整数,作为初始插入序列。最后L行,每行给出N个插入的元素,属于L个需要检查的序列。
简单起见,我们保证每个插入序列都是1到N的一个排列。当读到N为0时,标志输入结束,这组数据不要处理。
输出格式:
对每一组需要检查的序列,如果其生成的二叉搜索树跟对应的初始序列生成的一样,输出“Yes”,否则输出“No”。
输入样例:
4 2
3 1 4 2
3 4 1 2
3 2 4 1
2 1
2 1
1 2
0
输出样例:
Yes
No
No
这道题就是考察二叉搜索树的插入。
用指针来构造二叉树的方法比较简单,这里用结构题数组再构造一遍。
最主要还是对用数组构建树的方法不熟悉,其实用数组建树,就是把数组的下标i当作地址。
另外判断是否是同一二叉搜索树 ,其实可以用数组保存遍历的data也能比较。
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
struct Tree{
int left;
int right;
int data;
};
Tree T1[15];
Tree T2[15];
void Init(Tree T[],int n){
for(int i=0;i<n;i++){
T[i].left=-1;
T[i].right=-1;
}
}
void Insert(Tree T[],int pre){
int root=0;
while(1)
{
if(T[pre].data>T[root].data&&T[root].right!=-1){
root=T[root].right;
}
if(T[pre].data<T[root].data&&T[root].left!=-1){
root=T[ root].left;
}
if(T[pre].data>T[root].data&&T[root].right==-1){
T[root].right=pre;
break;
}
if(T[pre].data<T[root].data&&T[root].left==-1){
T[root].left=pre;
break;
}
}
return ;
}
int campare(int p,int q){
if(p==-1&&q==-1){
return 1;
}
if(((p==-1)&&(q!=-1))||((p!=-1&&q==-1)))
return 0;
if(T1[p].data!=T2[q].data){
return 0;
}
return (campare(T1[p].left,T2[q].left)&&campare(T1[p].right,T2[q].right));
}
int main(){
int n;
while(1){
cin>>n;
if(n==0)
break;
int l;
cin>>l;
for(int i=0;i<n;i++){
cin>>T1[i].data;
}
Init(T1,n);
for(int i=1;i<n;i++){
Insert(T1,i);
}
/*for(int i=0;i<n;i++){
cout<<T1[i].left<<" "<<T1[i].data<<" "<<T1[i].right<<endl;
}
*/
for(int j=0;j<l;j++){
for(int i=0;i<n;i++){
cin>>T2[i].data;
}
Init(T2,n);
for(int i=1;i<n;i++){
Insert(T2,i);
}
/* for(int i=0;i<n;i++){
cout<<T2[i].left<<" "<<T2[i].data<<" "<<T2[i].right<<endl;
}
*/
if(campare(0,0))
cout<<"Yes"<<endl;
else
cout<<"No"<<endl;;
}
}
}
386

被折叠的 条评论
为什么被折叠?



