【Hadoop】大数据时代——我们为什么要使用Hadoop

我们先来看看大数据时代,

什么叫大数据,“大”,说的并不仅是数据的“多”!不能用数据到了多少TB ,多少PB 来说。

对于大数据,可以用四个词来表示:大量,多样,实时,不确定。

也就是数据的量庞大,数据的种类繁杂多样话,数据的变化飞快,数据的真假存疑。

大量:这个大家都知道,想百度,淘宝,腾讯,Facebook,Twitter等网站上的一些信息,这肯定算是大数据了,都要存储下来。

多样:数据的多样性,是说数据可能是结构型的数据,也可能是非结构行的文本,图片,视频,语音,日志,邮件等。

实时:大数据需要快速的,实时的进行处理。如果说对时间要求低,那弄几个机器,对小数据进行处理,等个十天半月的出来结果,这样也没有什么意义了。

不确定: 数据是存在真伪的,各种各样的数据,有的有用,有的没用。很难辨析。

 

根据以上的特点,我们需要一个东西,来:

1存储大量数据

2快速的处理大量数据

3从大量数据中进行分析

 

于是就有了这样一个模型hadoop。

hadoop的历史就不说了。先来看看模型。

 

这就相当于一个生态系统,或者可以看成一个操作系统XP,win7.

HDFS和MapReduce为操作系统的核心,Hive,Pig,Mathout,Zookeeper,Flume,Sqoop,HBase等,都是操作系统上的一些软件,或应用。

希望有兴趣学习大数据的朋友可以通过我之前的学习路线获得一些思考和借鉴,如果有任何疑问或者需要学习方法和路线的朋友可以加博主的qq779229548,备注上你学习的目的即可,无论你是新手还是大牛,博主都欢迎前来交流。

HDFS:(Hadoop Distributed File System),Hadoop分布式文件系统。从名字上就看出了它的两点功能。

基本功能,存文件,是一个文件系统;另外这个文件系统是分布式的;

从图上来看,HDFS的简单原理。

Rack1,Rack2,Rack3是三个机架;

1,2,3,4,5,6,7,8,9,10,11,12 是机架上的十二台服务器。

Block A, Block B, Block C为三个信息块,也就是要存的数据。

 

从整体布局上来看,信息块被分配到机架上。看似很均匀。这样分配的目的,就是备份,防止某一个机器宕机后,单点故障的发生。

 

MapReduce,(Map + Reduce),就看成是计算的功能。可以对数据进行处理。

它加快了计算。主要也是通过上图的布局。将数据分布到多个服务器上。当有任务了,比如查询,或者比较大小,先让每台服务器,都处理自己的存储中文件。然后再将所有服务器的处理结果进行第二次处理。最后将结果返回。

 

其实,hadoop还有一点好处,就是省钱。

框架开源的,免费的,服务器也不用特别牛X的。

省钱才是硬道理。

 

 

 另外,从别的资料看到一种解释mapreduce的方式,很简单

 

Goal: count the number of books in the library.

Map: You count up shelf #1, I count up shelf #2.

(The more people we get, the faster this part goes. )

Reduce: We all get together and add up our individual counts.


阅读更多

没有更多推荐了,返回首页