机器学习
文章平均质量分 76
理论相关知识
小白太白
这个作者很懒,什么都没留下…
展开
-
行列式、矩阵(及秩)的理解概述
一、什么是矩阵?强烈建议阅读博客:理解矩阵(一)、理解矩阵(二)、理解矩阵(三),会对矩阵有一个全新、直观的理解这里给出文中的解释:矩阵不仅可以作为线性变换的描述,而且可以作为一组基的描述。而 作为变换的矩阵,不但可以把线性空间中的一个点给变换到另一个点去,而且也能够把线性空间中的一个坐标系(基)表换到另一个坐标系(基)去。而且,变换点 与变换坐标系,具有异曲同工的效果。逆矩阵:与该矩阵相乘为...原创 2019-11-17 22:22:00 · 1705 阅读 · 0 评论
-
【转】浅谈Pytorch中的显存利用问题(附完善显存跟踪代码)
前言之前在浅谈深度学习:如何计算模型以及中间变量的显存占用大小和如何在Pytorch中精细化利用显存中我们已经谈论过了平时使用中显存的占用来自于哪里,以及如何在Pytorch中更好地使用显存。在这篇文章中,我们借用Pytorch-Memory-Utils这个工具来检测我们在训练过程中关于显存的变化情况,分析出我们如何正确释放多余的显存。在深度探究前先了解下我们的输出信息,通过Pytorch-Memory-Utils工具,我们在使用显存的代码中间插入检测函数(如何使用见工具github页面和下文部分),就转载 2021-09-09 09:16:56 · 5576 阅读 · 0 评论 -
语义分割数据集制作(借助labelme)
1、安装labelme在虚拟环境中输入下述命令:# 安装pyqt:conda install pyqt# 安装labelme:pip install labelme -i https://pypi.tuna.tsinghua.edu.cn/simple2、标注使用labelme进行标注3、获取掩码图像在当前虚拟环境中运行如下代码"""最后得到的文件如上图 b_json 目录所示"""import globimport osdata_folder = r"datasets"原创 2021-08-05 17:27:23 · 943 阅读 · 0 评论 -
图解线性代数二
基变换特征向量与特征值抽象向量空间克莱姆法则基变换普通基变换(下图的A矩阵将在后面作为用我们的语言表示的詹妮弗的基空间)从几何上说,这个矩阵将我们的网格变换为詹妮弗的网格。但是从数值上说,这是用她的语言来描述转化为用我们的语言来描述(这里注意它的逆可以使对应关系相反)下面两张图展示向量[3 2]在詹妮弗的语言中表示什么,也就是该向量左乘A矩阵...原创 2019-12-05 10:15:49 · 412 阅读 · 0 评论 -
图解线性代数一
矩阵与线性变换矩阵乘法与线性变换复合三维空间中的线性变换行列式逆矩阵、列空间与零空间非方阵点积叉积矩阵与线性变换一个二维线性变换仅有四个数字完全确定,即变化后的 i 向量和变换后的 j 向量,通常把它们放在一个 2×2 矩阵里。矩阵在这里只是一个记号,它含有描述一个线性变换的信息(下图向量[x y]仅仅是此变换对应的基向量)**线性变换是操纵空间的一...原创 2019-12-05 10:15:38 · 285 阅读 · 0 评论 -
【转】深度学习中的正则化(Regularization)
转自:http://www.imooc.com/article/69484一、Bias(偏差) & Variance(方差)在机器学习中,这两个名词经常让我们傻傻分不清。我们不妨用案例来看看怎么区分。假设我们正在做一个分类器,分别在训练集和验证集上测试,以下为四种可能的情况:四种情况可见①、④两种情况的训练集误差都很小,接近optimal error,这种就称为l...原创 2019-11-15 22:09:23 · 111 阅读 · 0 评论 -
【转】如何理解最小二乘法?
博客转自:https://blog.csdn.net/ccnt_2012/article/details/811271171 日用而不知来看一个生活中的例子。比如说,有五把尺子:用它们来分别测量一线段的长度,得到的数值分别为(颜色指不同的尺子):之所以出现不同的值可能因为:不同厂家的尺子的生产精度不同尺子材质不同,热胀冷缩不一样测量的时候心情起伏不定........原创 2019-11-15 17:33:27 · 198 阅读 · 0 评论 -
【转】通俗易懂!白话朴素贝叶斯
转自博客:https://blog.csdn.net/red_stone1/article/details/80935942说起朴素贝叶斯,很多人会被它复杂的公式和易混淆的概念搞得晕头转向、不知所以。本文,我将以最通俗的语言,尽量减少复杂公式的使用,白话讲解朴素贝叶斯算法的原理,并通过实际的例子,利用朴素贝叶斯思想,解决机器学习问题。让你快速对朴素贝叶斯有直观且形象的理解。1. 买瓜问题...原创 2019-11-16 16:35:07 · 353 阅读 · 1 评论 -
【转】极大似然估计详解
转自博客:https://blog.csdn.net/zengxiantao1994/article/details/72787849极大似然估计以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计有了新的认识,总结如下:贝叶斯决策首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:其中:p(w):为先验概率,表示每种类别分布的概率;p(x...原创 2019-11-15 16:33:01 · 1196 阅读 · 0 评论 -
简单文档分类——朴素贝叶斯算法
朴素贝叶斯算法朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier 或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估...原创 2019-12-01 18:11:26 · 631 阅读 · 3 评论 -
CNN卷积层和池化层计算图解
李宏毅讲解CNN卷积层操作图解池化层操作图解一次卷积+池化层操作后结果压平层操作图解处理实例讲解1处理实例讲解2简单实例展示...原创 2020-07-01 12:17:34 · 1327 阅读 · 0 评论
分享