Python openpose(摄像头实现)

这段代码展示了如何利用预训练的MobileNet模型和OpenCV来实现人体姿态估计。首先,它设置了环境变量并加载了模型。接着,从输入图像或视频中读取帧,对每一帧进行处理,通过设定的阈值检测关键身体部位。最后,用线条连接检测到的身体部位,并在画布上显示结果。此外,代码还计算了模型的运行时间。
摘要由CSDN通过智能技术生成

环境要求:基本的Pytorch环境及基本的库

模型文件:https://codechina.csdn.net/mirrors/quanhua92/human-pose-estimation-opencv/-/blob/master/graph_opt.pb

代码:

# To use Inference Engine backend, specify location of plugins:
# export LD_LIBRARY_PATH=/opt/intel/deeplearning_deploymenttoolkit/deployment_tools/external/mklml_lnx/lib:$LD_LIBRARY_PATH
import cv2 as cv
import numpy as np
import argparse

parser = argparse.ArgumentParser()
parser.add_argument('--input', help='Path to image or video. Skip to capture frames from camera')
parser.add_argument('--thr', default=0.2, type=float, help='Threshold value for pose parts heat map')
parser.add_argument('--width', default=368, type=int, help='Resize input to specific width.')
parser.add_argument('--height', default=368, type=int, help='Resize input to specific height.')

args = parser.parse_args()

BODY_PARTS = { "Nose": 0, "Neck": 1, "RShoulder": 2, "RElbow": 3, "RWrist": 4,
               "LShoulder": 5, "LElbow": 6, "LWrist": 7, "RHip": 8, "RKnee": 9,
               "RAnkle": 10, "LHip": 11, "LKnee": 12, "LAnkle": 13, "REye": 14,
               "LEye": 15, "REar": 16, "LEar": 17, "Background": 18 }

POSE_PAIRS = [ ["Neck", "RShoulder"], ["Neck", "LShoulder"], ["RShoulder", "RElbow"],
               ["RElbow", "RWrist"], ["LShoulder", "LElbow"], ["LElbow", "LWrist"],
               ["Neck", "RHip"], ["RHip", "RKnee"], ["RKnee", "RAnkle"], ["Neck", "LHip"],
               ["LHip", "LKnee"], ["LKnee", "LAnkle"], ["Neck", "Nose"], ["Nose", "REye"],
               ["REye", "REar"], ["Nose", "LEye"], ["LEye", "LEar"] ]

inWidth = args.width
inHeight = args.height

net = cv.dnn.readNetFromTensorflow("graph_opt.pb")

cap = cv.VideoCapture(args.input if args.input else 0)

while cv.waitKey(1) < 0:
    hasFrame, frame = cap.read()
    if not hasFrame:
        cv.waitKey()
        break

    frameWidth = frame.shape[1]
    frameHeight = frame.shape[0]
    
    net.setInput(cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (127.5, 127.5, 127.5), swapRB=True, crop=False))
    out = net.forward()
    out = out[:, :19, :, :]  # MobileNet output [1, 57, -1, -1], we only need the first 19 elements

    assert(len(BODY_PARTS) == out.shape[1])

    points = []
    for i in range(len(BODY_PARTS)):
        # Slice heatmap of corresponging body's part.
        heatMap = out[0, i, :, :]

        # Originally, we try to find all the local maximums. To simplify a sample
        # we just find a global one. However only a single pose at the same time
        # could be detected this way.
        _, conf, _, point = cv.minMaxLoc(heatMap)
        x = (frameWidth * point[0]) / out.shape[3]
        y = (frameHeight * point[1]) / out.shape[2]
        # Add a point if it's confidence is higher than threshold.
        points.append((int(x), int(y)) if conf > args.thr else None)

    for pair in POSE_PAIRS:
        partFrom = pair[0]
        partTo = pair[1]
        assert(partFrom in BODY_PARTS)
        assert(partTo in BODY_PARTS)

        idFrom = BODY_PARTS[partFrom]
        idTo = BODY_PARTS[partTo]

        if points[idFrom] and points[idTo]:
            cv.line(frame, points[idFrom], points[idTo], (0, 255, 0), 3)
            cv.ellipse(frame, points[idFrom], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)
            cv.ellipse(frame, points[idTo], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)

    t, _ = net.getPerfProfile()
    freq = cv.getTickFrequency() / 1000
    cv.putText(frame, '%.2fms' % (t / freq), (10, 20), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))

    cv.imshow('OpenPose using OpenCV', frame)

 

其代码较为简单,模型(较小:7.8M)已经训练好在graph_opt.pb文件中,其中全部实现代码在openpose.py文件中,下面是实现代码及测试效果: # To use Inference Engine backend, specify location of plugins: # export LD_LIBRARY_PATH=/opt/intel/deeplearning_deploymenttoolkit/deployment_tools/external/mklml_lnx/lib:$LD_LIBRARY_PATH import cv2 as cv import numpy as np import argparse parser = argparse.ArgumentParser() parser.add_argument('--input', help='Path to image or video. Skip to capture frames from camera') parser.add_argument('--thr', default=0.2, type=float, help='Threshold value for pose parts heat map') parser.add_argument('--width', default=368, type=int, help='Resize input to specific width.') parser.add_argument('--height', default=368, type=int, help='Resize input to specific height.') args = parser.parse_args() BODY_PARTS = { "Nose": 0, "Neck": 1, "RShoulder": 2, "RElbow": 3, "RWrist": 4, "LShoulder": 5, "LElbow": 6, "LWrist": 7, "RHip": 8, "RKnee": 9, "RAnkle": 10, "LHip": 11, "LKnee": 12, "LAnkle": 13, "REye": 14, "LEye": 15, "REar": 16, "LEar": 17, "Background": 18 } POSE_PAIRS = [ ["Neck", "RShoulder"], ["Neck", "LShoulder"], ["RShoulder", "RElbow"], ["RElbow", "RWrist"], ["LShoulder", "LElbow"], ["LElbow", "LWrist"], ["Neck", "RHip"], ["RHip", "RKnee"], ["RKnee", "RAnkle"], ["Neck", "LHip"], ["LHip", "LKnee"], ["LKnee", "LAnkle"], ["Neck", "Nose"], ["Nose", "REye"], ["REye", "REar"], ["Nose", "LEye"], ["LEye", "LEar"] ] inWidth = args.width inHeight = args.height net = cv.dnn.readNetFromTensorflow("graph_opt.pb") cap = cv.VideoCapture(args.input if args.input else 0) while cv.waitKey(1) < 0: hasFrame, frame = cap.read() if not hasFrame: cv.waitKey() break frameWidth = frame.shape[1] frameHeight = frame.shape[0] net.setInput(cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (127.5, 127.5, 127.5), swapRB=True, crop=False)) out = net.forward() out = o
OpenPose是一个开源的人体姿态估计库,Python是一种流行的编程语言,可以用于OpenPose的编程。在Python中调用摄像头可以使用OpenCV库,该库非常方便地处理图像和视频的读取、显示和保存。使用OpenPoseOpenCV库,可以实现通过摄像头实时检测人体姿态的功能。 在Python中调用摄像头,首先需要安装OpenPoseOpenCV库。安装后,在代码中引入库,设置参数,打开摄像头并读取摄像头拍摄的图像,对图像进行姿态估计,然后把结果在屏幕上显示出来。具体步骤如下: 1. 导入库 import cv2 import time import numpy as np import argparse import os from sys import platform try: # Import Openpose (Windows/Ubuntu/OSX) dir_path = os.path.dirname(os.path.realpath(__file__)) os.sys.path.append(dir_path + "/../python/openpose/Release"); from openpose import pyopenpose as op except ImportError as e: print(e) sys.exit(-1) 2. 设置参数 params = dict() params["model_folder"] = "../openpose/models/" # Starting OpenPose opWrapper = op.WrapperPython() opWrapper.configure(params) opWrapper.start() 3. 打开摄像头并读取图像 cap = cv2.VideoCapture(0) while True: # Capture frame-by-frame ret, frame = cap.read() if not ret: print("Error") break 4. 对图像进行姿态估计 datum = op.Datum() datum.cvInputData = frame opWrapper.emplaceAndPop([datum]) 5. 将结果在屏幕上显示出来 cv2.imshow("OpenPose", datum.cvOutputData) if cv2.waitKey(1) & 0xFF == ord('q'): break 6. 释放资源并关闭窗口 cap.release() cv2.destroyAllWindows() 以上就是使用OpenPoseOpenCV库在Python中调用摄像头,并实现实时检测人体姿态的简单步骤。需要注意的是,此处只是演示了基本的姿态估计,如果要进行更复杂的姿态估计,需要对代码进行更多的修改和优化。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值