matlab upsample and xcorr函数用法

upsample

Increase sample rate by integer factor collapse all in page
Syntax
y = upsample(x,n)
y = upsample(x,n,phase)
Description
example
y = upsample(x,n) increases the sample rate of x by inserting n – 1 zeros between samples. If x is a matrix, the function treats each column as a separate sequence.
y = upsample(x,n,phase) specifies the number of samples by which to offset the upsampled sequence.
Examples
collapse all
Increase Sample Rates
Open Live Script
Increase the sample rate of a sequence by a factor of 3.

x = [1 2 3 4];
y = upsample(x,3)
y = 1×12

     1     0     0     2     0     0     3     0     0     4     0     0

Increase the sample rate of the sequence by a factor of 3 and add a phase offset of 2.

x = [1 2 3 4];
y = upsample(x,3,2)
y = 1×12

     0     0     1     0     0     2     0     0     3     0     0     4

x1= [1 2 3 4];
y = upsample(x,3,1)
y = 1×12

     0     1     0     0     2     0     0     3     0     0     4

Increase the sample rate of a matrix by a factor of 3.

x = [1 2;
     3 4;
     5 6];
y = upsample(x,3)
y = 9×2

     1     2
     0     0
     0     0
     3     4
     0     0
     0     0
     5     6
     0     0
     0     0

Input Arguments
collapse all
x — Input array
vector | matrix
Input array, specified as a vector or matrix. If x is a matrix, the function treats the columns as independent channels.

Example: cos(pi/4*(0:159)) + randn(1,160) specifies a sinusoid embedded in white Gaussian noise.

Example: cos(pi./[4;2]*(0:159))' + randn(160,2) specifies a two-channel noisy sinusoid.

Data Types: single | double
Complex Number Support: Yes
n — Upsampling factor
positive integer
Upsampling factor, specified as a positive integer.

Data Types: single | double
phase — Offset
0 (default) | positive integer
Offset, specified as a positive integer from 0 to n – 1.

Data Types: single | double
Output Arguments
collapse all
y — Upsampled array
vector | matrix
Upsampled array, returned as a vector or matrix. y has x × n samples.

 

 

Matlab中用于计算自相关函数的指令是xcorr.比如矩阵A=[1 2 3];

xcorr(A)=3.0000 8.0000 14.0000 8.0000 3.0000

自相关函数是信号间隔的函数,间隔有正负间隔,所以n个长度的信号,有2n-1个自相关函数值,分别描述的是不同信号间隔的相似程度。

比如,上面的矩阵,最后得到5个结果,其中第三个是自己和自己相乘,最后相加的结果,值最大1*1+2*2+3*3=14。而第二个和第四个分别是间隔正负1的结果也就是1*2+2*3=8,2*1+3*2=8。第1个和第五个分别是间隔正负2,也就是1*3=3,3*1=3。

使用方法回目录

c = xcorr(x,y)
c = xcorr(x)
c = xcorr(x,y,'option')
c = xcorr(x,'option')
c = xcorr(x,y,maxlags)
c = xcorr(x,maxlags)
c = xcorr(x,y,maxlags,'option')
c = xcorr(x,maxlags,'option')
[c,lags] = xcorr(...)
功能描述回目录
xcorr来估计随机过程中的互相关序列,自相关是xcorr的一个特例。
互相关函数序列为:




x(n)和y(n)为统计的随机序列,-∞
c = xcorr(x,y) 返回矢量长度为2*N-1互相关函数序列,其中x和y的矢量长度均为N,如果x和y的长度不一样,则在短的序列后补零直到两者长度相等。
一般情况下,xcorr计算无正规化的原始相关系数。

输出矢量C通过c(m) = Rxy(m-N), m=1, ..., 2N-1.得到。
通常,互相关函数需要正规化来得到更准确的估计值。
c = xcorr(x) 为矢量x的自相关估计;
c = xcorr(x,y,'option') 为有正规化选项的互相关计算;其中选项为
"biased"为有偏的互相关函数估计;
"unbiased"为无偏的互相关函数估计;
"coeff"为0延时的正规化序列的自相关计算;
"none"为原始的互相关计算;
若需了解更多的有偏和无偏相关估计,请参阅文献[1].
c= xcorr(x,'option')特指以上某个选项的自相关估计。
c = xcorr(x,y,maxlags) 返回一个延迟范围在[-maxlags,maxlags]的互相关函数序列,输出c的程度为2*maxlags-1.
c = xcorr(x,maxlags) 返回一个延迟范围在[-maxlags,maxlags]的自相关函数序列,输出c的程度为2*maxlags-1.
c = xcorr(x,y,maxlags,'option') 同时指定maxlags和option的互相关计算.
c = xcorr(x,maxlags,'option') 同时指定maxlags和option的自相关计算.
[c,lags] = xcorr(...)返回一个在c进行相关估计的延迟矢量lag,其范围为[-maxlags:maxlags],当maxlags没有指定时,其范围为[-N+1,N-1]
总之,无论是互相关计算还是相关计算都是以序列中间位置进行0lags计算。
应用举例回目录
使用高斯白噪声进行自相关估计,其中lags=10;
ww = randn(1000,1);
[c_ww,lags] = xcorr(ww,10,'coeff');
stem(lags,c_ww)

 

 

) 相关程度与相关函数的取值有什么联系?
相关系数只是一个比率,不是等单位量度,无什么单位名称,也不是相关的百分数,一般取小数点后两位来表示。相关系数的正负号只表示相关的方向,绝对值表示相关的程度。因为不是等单位的度量,因而不能说相关系数0.7是0.35两倍,只能说相关系数为0.7的二列变量相关程度比相关系数为0.35的二列变量相关程度更为密切和更高。也不能说相关系数从0.70到0.80与相关系数从0.30到0.40增加的程度一样大。
对于相关系数的大小所表示的意义目前在统计学界尚不一致,但通常按下是这样认为的:
相关系数 相关程度
0.00-±0.30 微相关
±0.30-±0.50 实相关
±0.50-±0.80 显著相关
±0.80-±1.00 高度相关
matlab计算自相关函数autocorr和xcorr有什么不一样的?xcorr是没有将均值减掉做的相关,autocorr则是减掉了均值。

用过Matlab的人都知道,Matlab的命令总是能一石三鸟,通过改变输入参数的注释项即可实现不同功能,如今xcorr命令的难点就在于其有四个注释项,这些注释项使得计算的结果各有不同,本文将详细介绍对应每个注释项Matlab是如何计算的,当然本文考虑输入的是一个简单一维序列x=[1,2,3],序列中数据对应的序号依次为1,2,3(请读者在阅读下文时,不要把序号和数据值弄混,这里只是个特例),其他情况读者可以轻松扩展得到。首先确定一下,该序列的均值为2,方差值为0.6667.这个应该不用说怎么算的吧。然后读者需要了解的是该命令意在计算序列中间隔不同距离的数据之间的关系。

第一:缺省注释项,[a,b]=xcorr(x),通过该命令计算的结果为:a=3 8 14 8 3;b=-2 -1 0 1 2.

下面介绍一下,该过程计算机是如何计算的,首先讲b的计算,设一维序列的长度为N,则序列中任意两个数据序号相减,最小值为1-N,最大值为N-1,且能取遍两者之间的所有整数,将这些数从小到大排列得到的就是b;然后讲a的计算,在缺省注释项的情况下,a的计算是这样的,a的每一项是对应b的每一项的

1、当b(1)=-2时,计算a(1)时只用到一组数据——(3,1)注意顺序,只有这两个数据的序号相减(后面数据的序号减去前面的)满足b=-2,因此a(1)的计算公式为:3*1=3

2、当b(2)=-1时,计算a(2)时用到两组数据——(2,1)和(3,2),这两组数据的序号相减(后面数据的序号减去前面的)满足b=-1,因此a(2)的计算公式为:2*1+3*2=8

3、当b(3)=0时,计算a(3)时用到三组数据——(1,1)、(2,2)、(3,3),这三组数据的序号相减(后面数据的序号减去前面的)满足b=0,因此a(3)的计算公式为:1*1+2*2+3*3=14

4、当b(4)=1时,计算a(4)时用到两组数据——(1,2)和(2,3),(读者请对比和情况2的区别),这两组数据的序号相减(后面数据的序号减去前面的)满足b=1,因此a(4)的计算公式为:1*2+2*3=8

5、当b(5)=2时,计算a(4)时用到一组数据——(1,3),(读者请对比和情况1的区别),这两组数据的序号相减(后面数据的序号减去前面的)满足b=2,因此a(4)的计算公式为:1*3=3

第二:注释项为‘unbiased’,[a,b]=xcorr(x,‘unbiased’),通过该命令计算的结果为:a=3 4 4.6667 4 3;b=-2 -1 0 1 2.下面介绍计算机如何计算该过程,b的计算在四种注释项的情况下是相同的,就不再讲述了。a的计算仍是和b的每一项相对应的。

1、当b(1)=-2时,计算a(1)时只用到一组数据(记N=1)——(3,1)注意顺序,只有这两个数据的序号相减(后面数据的序号减去前面的)满足b=-2,因此a(1)的计算公式为:(3*1)/1=3

2、当b(2)=-1时,计算a(2)时用到两组数据(记N=2)——(2,1)和(3,2),这两组数据的序号相减(后面数据的序号减去前面的)满足b=-1,因此a(2)的计算公式为:(2*1+3*2)/2=4

3、当b(3)=0时,计算a(3)时用到三组数据(记N=3)——(1,1)、(2,2)、(3,3),这三组数据的序号相减(后面数据的序号减去前面的)满足b=0,因此a(3)的计算公式为:(1*1+2*2+3*3)/3=4.6667

4、当b(4)=1时,计算a(4)时用到两组数据(记N=2)——(1,2)和(2,3),(读者请对比和情况2的区别),这两组数据的序号相减(后面数据的序号减去前面的)满足b=1,因此a(4)的计算公式为:(1*2+2*3)/2=4

5、当b(5)=2时,计算a(4)时用到一组数据(记N=1)——(1,3),(读者请对比和情况1的区别),这两组数据的序号相减(后面数据的序号减去前面的)满足b=2,因此a(4)的计算公式为:(1*3)/1=3

第三:注释项为‘biased’,[a,b]=xcorr(x,‘biased’),通过该命令计算的结果为:a=  1.0000   2.6667    4.6667    2.6667    1.0000,b=-2 -1 0 1 2。下面介绍计算机如何计算该过程,注意到本次计算用到的序列x的长度为3,记为M=3。

1、当b(1)=-2时,计算a(1)时只用到一组数据——(3,1)注意顺序,只有这两个数据的序号相减(后面数据的序号减去前面的)满足b=-2,因此a(1)的计算公式为:(3*1)/M=1

2、当b(2)=-1时,计算a(2)时用到两组数据——(2,1)和(3,2),这两组数据的序号相减(后面数据的序号减去前面的)满足b=-1,因此a(2)的计算公式为:(2*1+3*2)/M=2.6667

3、当b(3)=0时,计算a(3)时用到三组数据——(1,1)、(2,2)、(3,3),这三组数据的序号相减(后面数据的序号减去前面的)满足b=0,因此a(3)的计算公式为:(1*1+2*2+3*3)/M=4.6667

4、当b(4)=1时,计算a(4)时用到两组数据——(1,2)和(2,3),(读者请对比和情况2的区别),这两组数据的序号相减(后面数据的序号减去前面的)满足b=1,因此a(4)的计算公式为:(1*2+2*3)/M=2.6667

5、当b(5)=2时,计算a(4)时用到一组数据——(1,3),(读者请对比和情况1的区别),这两组数据的序号相减(后面数据的序号减去前面的)满足b=2,因此a(4)的计算公式为:(1*3)/M=1

第四:注释项为‘coeff’,[a,b]=xcorr(x,‘coeff’),通过该命令计算的结果为:a= 0.2143   0.5714    1.0000    0.5714    0.2143,b=-2 -1 0 1 2,下面介绍计算机如何计算该过程,这种情况实际是将第三种情况下得到的结果进行归一化,使得b=0时对应的值为1,a(1)=1/4.6667=0.2143;a(2)=2.6667/4.6667=0.5714,a(3)=4.6667/4.6667=1,a(4)=2.6667/4.6667=0.5714,a(5)=1/4.6667=0.2143

 

另:xcorr命令在工程上的应用通常是对时间上的采样数据序列x进行处理,当数据点采完之后交给Matlab处理时,Matlab是不知道你的采样时间间隔的,它仅仅根据上文所述的计算过程对输入的数据序列x进行计算,但我们可以自己定义时间间隔,例如dt=0.01,此时t=dt*b即代表相关性计算中的时间延迟,前半部分是超前,后半部分是滞后,若R=xcorr(x,‘unbiased’),则通过命令:plot(t,R)即可得到该时域信号的自相关函数曲线。

 

相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页