毕业设计-深度学习机器视觉的交通标识符识别

目录

前言

课题背景与意义

课题实现技术思路

图像预处理

提取特征颜色

边缘提取

实现效果

最后💯


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着准备考研,考公,考教资或者实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦! 

本次分享的课题是

🎯深度学习机器视觉的交通标识符识别

课题背景与意义

       路标识别系统最终任务是用来识别左转、右转等标志图片。随着经济的快速发展,汽车得到广泛的普及,针对事故频发的现象,有必要对智能交通技术进行研究,以方便司机出行,减少事故的发生。路标自动检测与识别作为智能交通技术的一个重要组成部分,得到越来越广泛的重视,本文利用Opencv对图像处理进行了研究,设计了一个路标识别系统。以图像打开、保存、几何变换、形态学处理、阈值分割、边缘检测和滤波等基本操作为基础,对路标数字图片进行处理检测,提取有效特征,采用K最近邻算法识别,获得了较高的准确率。

课题实现技术思路

图像预处理

  • 由于交通标志牌受到内在破损,污染等因素所以对图像进行预处理是必要的。如图像分割,几何变换、噪音消除等,图像预处理的目的是为了消除退化因素和随机噪声对原始图像的影响,然后才能依据训练得到的数字特征进行识别。

  • 方框滤波、中值滤波以及高斯滤波,在去噪方面有着杰出的作为都能或多或少地起到去噪作用。
  • 在这里我们用中值滤波作平滑滤波器。

代码部分:

提取特征颜色

  • 根据三种交通标志牌的颜色,初步确定待识别图片所要提取图片信息的颜色范围,代码中使用的是RGB颜色模型。RGB颜色模型是位于空间中的一个立体模型,如下图所示为RGB的色度坐标示意图。

  • 在特征颜色提取中,确定颜色的阈值是其中最重要的一点(HSV颜色模型可以避免光 照不同的影响,此处不讨论),经过查询资料,得到红、蓝、黄对应的阈值如下:

  • 其中ThR=0.4;ThG=0.3,ThB=0.4,ThY=0.85

    在这种情况下, G分量的值比R分量和B分量大50则判定绿色,B分量的值比G分量和R分量大50则判定蓝色, R分量的值比G分量和B分量大50则判定为红色,找到满足条件的区域后在原图中标出,不满足条件的部分标为黑色。 

边缘提取

  • 图像边缘是图像重要的特征之一。图像边缘保留了原始图像中相当重要的部分信息,而又使得总的数据量减小了很多,符合特征提取的要求。用于图像识别的边缘提取比仅仅用于视觉效果增强的边缘提取要复杂一些。边缘对应于物体的边界,冬像上灰度变化剧烈的区域比较符合这个要求,一般会以这个特征来提取图像的边缘。

  • 常用的边缘检测方法有:Sobel 边缘检测算子、 Laplace 边缘检测算子、Canny边缘检测算子等。这里我们用Sobel 边缘检测算子。

代码部分:

Sobel 算子演示结果:

通过以上这几步,基本能在一张图片中找到交通标志牌的位置了

原图:

实现效果

最后💯

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值