毕业设计--基于深度学习的常见苹果叶片病害识别与病斑分割方法研究

目录

前言

课题背景和意义

实现技术思路

实现效果图样例


前言


    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

选题指导: https://blog.csdn.net/qq_37340229/article/details/128243277

大家好,这里是海浪学长毕设专题,本次分享的课题是

🎯基于深度学习的常见苹果叶片病害识别与病斑分割方法研究

课题背景和意义

近年来,根据国家统计局的数据显示,中国已成为全球生产苹果第一大国。中国的苹果种植地域广阔,但各种病害仍是限制我国苹果产业的健康发展的重要因素,给农民造成了不同程度上的损失,当前发生最为危害最严重的是:腐烂病、轮纹病、褐斑病和斑点落叶病;由于病害的严重,我国化肥及农药的投入持续增长,长期发展下去,势必会造成一定的化学药品的滥用或超量使用,导致农作物耐药菌病原体菌株的出现,最终导致农业重大的经济损失及污染环境。通过人工观察的方式对于农作物病虫害进行识别,是我国的现状。由于我国大部分农民的专业素质偏低,往往会将病虫害类型识别错误,请相关的植保专家则存在着需要花费价格高昂的费用,农民本身往往难以承担,随着深度学习的崛起和计算机计算能力的增强,采用智慧农业物联网系统对农作物病虫害进行智能诊断,不仅省时省力,而且科学精准,从动态采集农作物的病虫害信息,到精准识别,有针对性防治决策,全过程基本实现自动化、科学化,降低农业成本。

实现技术思路

病害识别与病害程度诊断系统原型设计 以所设计的病害图像语义分割模型为后台,设计基于 B/S 模式的苹果病害识别与病害程度诊断软件,具有包括病害识别、病害程度诊断、果园区域病情估计、论坛交流、常见病害科普信息浏览等功能。

一、数据采集

从采集到的图像中选择包含 5 种病害和健康叶片的图像作为供试数据集,为数据集中 5 种常见叶片病害及健康叶片等 6 种类别的苹果叶片代表性图像。从数据集可见,由同一疾病引起的病变在相似的自然条件下表现出一定的共性,5 种常见病害具有较为明显的视觉特征,且不同病害之间具有差异性。
1.1建立数据集
结合图像质量及病斑区域可标定性,选择 数据集中斑点落叶病、灰斑病、 褐斑病、锈病和健康叶片彩色图像作为研究对象。
1.2数据集标定
利用 Labelme 软件对包含 4 种病害和健康叶片的病害数据集进行数据标定,标注出图像的病斑区域、叶片区域及背景区域。

二、数据预处理

在进行卷积神经网络训练工作之前对数据集进行简单的预处理也可以提升模型的性能和收敛速度。首先,为提高模型训练速度对数据进行了归一化,其次,为提升模型泛化能力对数据集进行了数据扩增。
2.1数据归一化
为了提高 CNN 网络收敛速度、学习图像间细微区别,故对数据集进行了归一化处理。归一化方法如下:通过减去通道 均值,并除以通道标准差来对数据进行零均值归一化处理,所有像素值处于[-1,1] 范围内
2.2 数据增强
CNNs 的主要优势之一是其泛化能力,但数据规模不够大且数据多样性小的时候,它们倾向于过度拟合训练数据。为增强网络的泛化能力、减少过拟合,通过数据增强技术扩充数据集,模拟苹果叶片图像拍摄时的光照、曝光、角度、噪声等变化情况。
1)角度干扰:对现有图像进行旋转、镜像和小规模的裁剪变换以扩充得到新的数据。
2)光线干扰:通过在原始图像上调整清晰度、亮度和对比度以扩充数据,尽量多地模拟实际应用中可能遇见的图像情况。
3)噪声干扰 :使用高斯噪声来模拟照相机在图像采集过程中引起的噪声以及成像模糊的情况。

4) 颜色空间干扰:PCA 抖动是实际上对 RGB 颜色空间添加扰动,从而达到对 RGB 颜色添加噪声的目的。

三、苹果叶片病害识别模型构建

3.1Xception 网络结构及特点

Xception 结构是带有残差连接的深度可分卷积层的线性堆 叠。Xception 模型的主要特点有两个:(1Xception 结构中使用可分离卷积可以在精度损失不多的情况下大幅度降低参数量和计算量,相比于常规卷积,深度可分离卷积参数量少且运算成本较低。(2)Xception 包含 14 个模块,除了第 1 个模块和最后一个模块,所有模块都加入了类似 ResNet的残差连接机制,加快了Xception 的收敛过程并获得了更高的准确率。

3.2 DenseNet 网络结构及特点
DenseNet 相比较于 VGG Inception-v3 Xception ResNet来说,需要更少的参数和合理的计算时间便可达到最好的性能。由于模型的特征复用和隐性深度监督等特性,DenseNet 可以自然地扩展到数百个层,且随着深度及参数的增加,精度有一定的提升且没有过拟合和性能下降的现象。

3.3 网络融合
考虑到 Xception 模型在保证性能的情况下使用深度可分离卷积而减少了模型参数,而 Densenet 模型具有密集连接结构,增加了特征复用能力,若将二者进行融合,则有可能在较小的参数量的基础之上提高特征复用能力而提高模型性能。
3.4模型泛化性能
为了检验模型的泛化性能,采用 5 折交叉验证法对模型性能进行评估。将数据随机分为 5 份, 对训练集进行数据增强、所有数据进行归一化后完成模型训练,同样的方法进行 5 次试验,确保每次取出不同的数据作为验证集和测试集。

四、对模型的苹果叶片病斑分割

4.1U-Net 网络
Ronneberger 等( 2015 )提出的 U-Net 是基于全卷积神经网络(
Fully convolutional Network, FCN )的经典语义分割网络,是采用编码器 - 解码器结构的端到端的语义分割模型。U-Net 解决了小量训练样本的分割问题,其主要思想是网络主要由编码器和解码器两部分组成,且左右两边几乎完全对称。

4.2PSPNet 网络
PSPNet Zhao et al. 2017 )利用金字塔池模块和金字塔场景解析网络,通过基于不同区域的上下文聚合来实现全局上下文信息融合的能力。对于语义分割任务来说,上下文信息的利用对于分割结果有明显的作用,PSPNet 采用了与 U-Net 类似的结构,减少了降采样的次数,在特征提取环节即编码阶段增加了金字塔池化模块,能够通过提取不同尺度的上下文信息提升网络编码阶段的特征提取能力。

语义分割模型对苹果叶片病害图像进行语义分割,使用迁移学习,并为每种模型进行精调,选择最适合的超参数组合,并通过试验为优选的 U-Net 深度语义分割网络确定了最好的骨干网络。
4.3DCMPM 模块
MPM 模块不仅能够提取水平和垂直方向的长程依赖关系,不仅利用金字塔池化子模块提取不同规模的局部区域的上下文信息,并通过 MPM 将长程依赖关系和局部上下文信息融合,能够有效提升模型不同尺度空间注意力的提取能力。

实现效果图样例

DCMPM 模块特征图可视化
U-Net 网络与 DCPU-Net 模型的病斑分割效果对比图。

我是海浪学长,创作不易,欢迎点赞、关注、收藏、留言。

毕设帮助,疑难解答,欢迎打扰!

最后

  • 7
    点赞
  • 84
    收藏
    觉得还不错? 一键收藏
  • 10
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值