'''
k折交叉验证
k折交叉验证里面的k并不是Knn里面的k(eighbors)
在KNN里,通过交叉验证,我们即可以得出最合适的K值。
它的核心思想无非就是把一些可能的K逐个去尝试一遍,
然后选出效果最好的K值。
一般情况将K折交叉验证用于模型调优,找到使得模型泛化性能最优的超参值。
,找到后,在全部训练集上重新训练模型,并使用独立测试集对模型性能做出最终评价。
https://blog.csdn.net/weixin_39183369/article/details/78953653
k折交叉验证
K折交叉验证(k-fold cross-validation)首先将所有数据分割成K个子样本,不重复的选取其中一个子样本作为测试集,其他K-1个样本用来训练。
共重复K次,平均K次的结果或者使用其它指标,最终得到一个单一估测。
这个方法的优势在于,保证每个子样本都参与训练且都被测试,降低泛化误差。其中,10折交叉验证是最常用的。
'''
import numpy as np
from sklearn.model_selection import KFold
x=['a','b','c']
kf=KFold(n_splits=3) # 三折交叉验证
#print(["%s%s"%(train,test) for train,test in kf.split(x)]) # [(array([1, 2]), array([0])), (array([0, 2]), array([1])), (array([0, 1]), array([2]))]
for train,test in kf.split(x):
print("%s%s"%(train,test))
'''
[1 2][0
交叉验证_一KNN为例子
最新推荐文章于 2024-07-09 17:43:26 发布

最低0.47元/天 解锁文章
394

被折叠的 条评论
为什么被折叠?



