1534437818
码龄8年
关注
提问 私信
  • 博客:203,642
    203,642
    总访问量
  • 60
    原创
  • 414,729
    排名
  • 17
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2017-01-16
博客简介:

qq_37354021的博客

查看详细资料
个人成就
  • 获得68次点赞
  • 内容获得12次评论
  • 获得263次收藏
  • 代码片获得307次分享
创作历程
  • 3篇
    2020年
  • 7篇
    2019年
  • 65篇
    2018年
成就勋章
TA的专栏
  • flink
    1篇
  • 数据库
    1篇
  • 字符相加
    1篇
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

flink_study

发布资源 2022.02.16 ·
docx

flink中AggregateFunction 执行步骤以及含义全网详细解释

package operator;import org.apache.flink.api.common.functions.AggregateFunction;import org.apache.flink.api.common.functions.FlatMapFunction;import org.apache.flink.api.common.functions.MapFunction;import org.apache.flink.api.common.functions.Reduce..
原创
发布博客 2020.10.20 ·
2856 阅读 ·
2 点赞 ·
1 评论 ·
7 收藏

2020-08-13

https://www.cnblogs.com/daizhengyang/p/13384169.html https://blog.csdn.net/qq_27289001/article/details/77150598 https://www.cnblogs.com/wujuntian/p/6821442.html 查看帮忙命令 hlep--server级别 db.he...
原创
发布博客 2020.08.13 ·
232 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python  浅拷贝 深拷贝 

----------------------不改变父对象类型----------import copya = [1, 2, 3, 4, ['a', 'b']] # 原始对象b = a # 赋值,传对象的引用c = copy.copy(a) # 对象拷贝,浅拷贝d = copy.deepcopy(a) # 对象拷贝,深拷贝a.appe...
原创
发布博客 2020.04.10 ·
248 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

#解决matplottlib显示中文的问题 # 仅适用于Windows

#解决matplottlib显示中文的问题# 仅适用于Windowsplt.rcParams['font.sans-serif']=['SimHei'] #指定默认字体plt.rcParams['axes.unicode_minus']=False #解决保存图像时符号-显示为方块的2问题...
原创
发布博客 2019.11.12 ·
217 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

自写逻辑回归(利用随机梯度下降法)

'''梯度下降法需要对每个杨讷都需要遍历。时间复杂度太大为了解决这个时间复杂度问题,我们最常用的算法其实是随机梯度下降法,可以理解成是梯度下降法的一个变种。''''''随机梯度下降法的核心思想是:每一次的迭代更新不再依赖于所有样本的梯度之和,而是仅仅依赖于其中一个样本的梯度。所以这种方法的优势很明显,通过很“便宜”的方式获得梯度,并频繁地对参数迭代更新。这里最大的问题是梯度...
原创
发布博客 2019.11.05 ·
1493 阅读 ·
0 点赞 ·
1 评论 ·
10 收藏

自写逻辑回归(利用梯度下降法)

import numpy as npimport matplotlib.pyplot as plt# 随机生成样本。二分类问题。每个类别生成5000个样本数据np.random.seed(12)num_observation=5000#正太分布 multivariate_normal(mean, cov, size=None, check_valid=None, tol=None...
原创
发布博客 2019.11.04 ·
285 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

np.where(y==1) 返回y=1的下标

pos=np.where(y==1) # 返回y=1的下标neg=np.where(y==0)
原创
发布博客 2019.11.04 ·
916 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

KNN回归-预测二手车

'''KNN是一个典型的分类模型,就时预测类别,例如苹果,香蕉等。预测的结果是训练集上已经包含的类别,并不会预测出新的类别二手车价格预测是预测车的价格,是数值。理应按照回归算法来算怎么用knn来实现回归问题呢? 找到最近的K样本之后,我们直接取了平均作为预测值,很直观这里给出了对于数据的简单描述。Ask Price 字段是我们要预测的值,即二手车的...
原创
发布博客 2019.10.28 ·
952 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

double_car.csv

发布资源 2019.10.28 ·
csv

交叉验证_一KNN为例子

'''k折交叉验证k折交叉验证里面的k并不是Knn里面的k(eighbors) 在KNN里,通过交叉验证,我们即可以得出最合适的K值。它的核心思想无非就是把一些可能的K逐个去尝试一遍,然后选出效果最好的K值。一般情况将K折交叉验证用于模型调优,找到使得模型泛化性能最优的超参值。,找到后,在全部训练集上重新训练模型,并使用独立测试集对模型性能做出最终评价。https://...
原创
发布博客 2019.10.17 ·
4347 阅读 ·
1 点赞 ·
0 评论 ·
19 收藏

knn的调用库和knn手写

from sklearn import datasetsfrom sklearn.model_selection import train_test_splitfrom sklearn.neighbors import KNeighborsClassifierimport numpy as npfrom sklearn.metrics import accuracy_scorei...
原创
发布博客 2019.10.14 ·
592 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

数据处理中 男性变为1 女性变为0

knn_train['Sex'][knn_train['Sex'] == 'male'] = 1 knn_train['Sex'][knn_train['Sex'] == 'female'] = 0 
原创
发布博客 2018.11.21 ·
12834 阅读 ·
2 点赞 ·
0 评论 ·
8 收藏

数据处理中 男性变为1 女性变为0

knn_train['Sex'][knn_train['Sex'] == 'male'] = 1 knn_train['Sex'][knn_train['Sex'] == 'female'] = 0 
原创
发布博客 2018.11.21 ·
12834 阅读 ·
2 点赞 ·
0 评论 ·
8 收藏

while else 和for else

1.#while else 和for else# 因为else语句不是独立语句而是语句块,语句块只有当回退到和与闭合的块# 一样的缩进量时语句结束,所以else语句不会单独结束'''while else 和for else意思就是while是和else一块的。当有break或者return的时候,会跳出while块,又因为while和else是一个整体,所以就跳出el...
原创
发布博客 2018.11.11 ·
11519 阅读 ·
9 点赞 ·
1 评论 ·
22 收藏

把dataframe的一列设为索引

#df.set_index('列名',inplace=True)
原创
发布博客 2018.10.05 ·
23442 阅读 ·
12 点赞 ·
3 评论 ·
15 收藏

dataframe中有很多维度的参数。用dataframe.plot的时候。我就只要一个维度的。(x轴默认的就是index)

#注意下面的绘制图像的简单的方法,可以直接dataframe类型的.plot results_df.plot(y=['Accuracy (%)'], kind='bar', ylim=[50, 100], ax=ax1, title='Accuracy(%)', legend=False) ax2 = plt.subplot(1, 2, 2)#(x轴默认的就是index)...
原创
发布博客 2018.10.04 ·
3545 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

图表 x轴是类别,y轴是个数。类似频率图

import seaborn as sns sns.countplot(x='price_range',data=train_data) #统计train_data总数据中price_range列中每个每个数字的个数 plt.title('Training_Data') # plt.xticks(rotation='vertical') plt.xlabe...
原创
发布博客 2018.10.04 ·
1120 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

绘图中一条直线进行上下填充

#化直线plt.semilogx(c_range,train_scores_mean,label='Training score', color='darkorange',lw=lw)#画直线上下的偏移,然后进行涂色plt.fill_between(c_range,train_scores_mean-train_scores_std, ...
原创
发布博客 2018.10.02 ·
338 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

当很多数据中比如水果类型1,2,3,水果标签苹果,例子,香蕉 很多这样的,这样给筛选出来

#创建目标标签和名称的字典 即1代表一种水果,2代表另一种水果 3代表另外一种水果fruit_name_dict=dict(zip(fruits_df['fruit_label'],fruits_df['fruit_name']))print(fruit_name_dict) #{1: 'apple', 2: 'mandarin', 3: 'orange', 4: 'lemon...
原创
发布博客 2018.10.02 ·
1428 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多