四种最短路径算法(Dijkstra,Floyd,Bellman-ford&&spfa)

本文详细介绍了四种常用的最短路径算法:Dijkstra、Floyd、Bellman-Ford和SPFA。Dijkstra算法适用于非负权重,Floyd算法可以处理负权重但不能有负权边组成的回路,Bellman-Ford能处理负权重边并可用于检测负环,SPFA是Bellman-Ford的优化版,提高了效率。每种算法都包含了概念解析、算法描述及代码实现。

一.Dijkstra算法

如何理解Dijkstra算法

Dijkstrashi适用于权值非负的情况。

1.定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。
问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

2.算法描述

1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2)算法步骤:
a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则

3.其他

Dijkstra完全类似于prim算法生成最小生成树。

4.代码实现

int dijkstra(int n)
{
    //初始化v[0]到v[i]的距离
    for(int i=1;i<=n;i++)
        dis[i] = w[0][i];                                       
    vis[0]=1;//标记v[0]点
    for(int i = 1; i <= n; i++)
    {
        //查找最近点
        int min = INF,k = 0;
        for(int j = 0; j <= n; j++)
            if(!vis[j] && dis[j] < min)
                min = dis[j],k = j;
        vis[k] = 1;//标记查找到的最近点
        //判断是直接v[0]连接v[j]短,还是经过v[k]连接v[j]更短
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值