【洛谷 P2257】YY的GCD 【莫比乌斯反演 经典题目】

本文介绍了一种求解特定范围内质数对数量的高效算法。对于给定的N和M,算法计算所有1<=x<=N,1<=y<=M且gcd(x,y)为质数的(x,y)对的数量。通过数学公式简化和预处理,实现了O(T*N^0.5)的时间复杂度。文章提供了详细的代码实现和解释。

题目描述
神犇YY虐完数论后给傻×kAc出了一题
给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对
kAc这种傻×必然不会了,于是向你来请教……

输入格式:
第一行一个整数T 表述数据组数
接下来T行,每行两个正整数,表示N, M
输出格式:
T行,每行一个整数表示第i组数据的结果

说明
T = 10000
N, M <= 10000000

分析:题目就是求

Ans=pprimex=1Ny=1M[gcd(x,y)=p] A n s = ∑ p ∈ p r i m e ∑ x = 1 N ∑ y = 1 M [ g c d ( x , y ) = p ]

式子化简的很好的博客
最后可以化为
Ans=T=1min(N,M)NTMTp|T,pprimeμ(TP) A n s = ∑ T = 1 m i n ( N , M ) ⌊ N T ⌋ ∗ ⌊ M T ⌋ ∑ p | T , p ∈ p r i m e μ ( T P )

后一个求和我们可以用o(n)求出前缀和,然后前面的可以整除分块求。最后时间复杂度 o(TN) o ( T ∗ N )
建议自己在纸上多推几遍
Code C o d e

#include <map>
#include <set>
#include <queue>
#include <stack>
#include <list>
#include <string>
#include <math.h>
#include <time.h>
#include <stdio.h>
#include <string.h>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
#define rep(i, l, r) for(int i = l; i < r; i++)
#define per(i, r, l) for(int i = r; i >= l; i--)

#include <ext/rope>
using namespace __gnu_cxx;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int>pii;

const int N = (int) 10000000 + 11;
const int M = (int) 1e6 + 11;
const int MOD = (int) 1e9 + 7;
const double EPS = (double) 1e-9;
const double PI = (double)acos(-1.0);
const int INF = (int) 0x3f3f3f3f;
const ll INFF = (ll) 0x3f3f3f3f3f3f3f3f;

void read(int &x){
    char ch = getchar(); x = 0;
    while(ch < '0' || ch > '9') ch = getchar();
    while(ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }
}
/*-----------------------------------------------------------------------------------*/ 

bool su[N] = {1, 1, 0};
int prm[N], mu[N], g[N], sz = 0;
int sum[N];
void init(int n){
    mu[1] = 1;
    for(int i = 2; i <= n; i++){
        if(!su[i]){
            prm[++sz] = i;
            mu[i] = -1;
        }
        for(int j = 1; j <= sz; j++){
            int t = i * prm[j];
            if(t > n) break;
            su[t] = 1;
            if(i % prm[j] == 0) {
                mu[t] = 0;
                break;
            }else {
                mu[t] = -mu[i];
            }
        }
    }
    rep(i, 1, sz + 1) for(int j = 1; j * 1ll * prm[i] <= n; j++) g[j * prm[i]] += mu[j];        
    sum[0] = 0;
    rep(i, 1, n + 1) sum[i] = sum[i - 1] + g[i];
}
int main(){
    #ifndef ONLINE_JUDGE
        freopen("in.txt", "r", stdin);
        freopen("out.txt", "w", stdout);
    #endif
    init(10000000);
    int T;scanf("%d", &T);
    while(T--){
        int n, m; scanf("%d%d", &n, &m);  //一开始多开了几个long long的变量居然T了几组,Emmmmm
        ll ans = 0;
        int c = min(n, m); 
        for(int l = 1, r; l <= c; l = r + 1){
            r = min(n / (n / l), m / (m / l));
            ans += (n / l) * 1ll * (m / l) * (sum[r] - sum[l - 1]); 
        }
        printf("%lld\n", ans);
    }   
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值