堆与栈

本文是搜集网上观点,整理部分“说服了我”的观点~

问题1:堆与栈有什么不同?

1.从数据结构上来看:

栈就像装数据的桶或者箱子,它的存取特点是:后进先出。

堆是一种经过排序的树形数据结构,每个结点都有一个值。通常我们所说的堆的数据结构,是指二叉堆。 堆的特点是根节点的值最小(或最大),且根节点的俩个子树页式一个堆。


    




2.从内存的分配方式来看:

    栈(英文名称是stack)是系统自动分配空间的。由于栈上的空间是自动分配自动回收的,所以栈上的数据的生存周期只是在函数的运行过程中,运行后就释放掉,不可以再访问。
    堆(英文名称是heap)则是程序员根据需要自己申请的空间。堆上的数据只要程序员不释放空间,就一直可以访问到,不过缺点是一旦忘记释放会造成内存泄露。

注意:

1.申请后系统的响应栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆。  结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的 delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。    也就是说堆会在申请后还要做一些后续的工作这就会引出申请效率的问题。



还有其他的一些区别我认为网上的朋友总结的不错这里转述一下:

1.申请后系统的响应

栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。

堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆。 结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的 delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。 也就是说堆会在申请后还要做一些后续的工作这就会引出申请效率的问题。

2.申请效率的比较

栈:由系统自动分配,速度较快。但程序员是无法控制的。

堆:是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便。

3.申请大小的限制

栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。  

堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。

4.堆和栈中的存储内容

由于栈的大小有限,所以用子函数还是有物理意义的,而不仅仅是逻辑意义。栈: 在函数调用时,第一个进栈的是主函数中函数调用后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。 当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。  

堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

5.存取效率的比较

char s1[] = "aaaaaaaaaaaaaaa"; char *s2 = "bbbbbbbbbbbbbbbbb"; aaaaaaaaaaa是在运行时刻赋值的;放在栈中。 而bbbbbbbbbbb是在编译时就确定的;

放在堆中。 但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。

关于堆和栈区别的比喻堆和栈的区别可以引用一位前辈的比喻来看出: 使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。 使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。比喻很形象,说的很通俗易懂,不知道你是否有点收获。


原文答案链接:https://wenwen.sogou.com/z/q705519085.html 楼主已经匿名【捂脸】,感谢大佬的技术分享~

阅读更多

没有更多推荐了,返回首页