数控设备故障知识图谱的构建与应用
- 针对某个数控设备故障案例事件来说,其各个故障影响因素与案例事件本身构成复杂的网络关系,而同属于一个故障现象的同类事件集组成了庞大的知识网络体系。
- 本文结合数控设备故障领域的数据特点,采用“自顶向下”与“自底向上”相结合的知识图谱构建技术、数据驱动的增量式本体建模方法和基于模式的知识映射机制来组织丰富知识库,并完成数控设备故障知识图谱的构建与应用。
- 数控设备故障知识图谱是指由组成故障案例的知识实体和这些知识实体之间的关联关系所构成的用以描述整类事件的知识语义网络。
- 数控设备故障知识图谱构建过程包括故障知识来源分析、领域概念关系本体建模、本体模型解析与存储、RDB到RDF的数据知识映射、知识图谱可视化分析以及管理与应用等步骤。
- 经分析,数控设备故障案例数据来源于生产执行系统中积累的RDB(Relational Database,关系型数据库,是基于关系模型的数据库,是数据与数据库对象的集合)结构化数据、案例文本资料、领域专家经验,通过获取更多更全面的数据,为领域本体建模提供数据支持。
- 基于数控设备故障案例知识本体,采用JENA解析器(Jena是一个Java的API(应用程序编程接口),用来支持语义网的有关应用,例如解析本体模型等),将本体元数据转化为资源描述框架RDF(Resource Description Framework,一种用于描述Web资源的标记语言,是一个处理元数据的XML应用),以<主体–属性–客体>三元组的形式实现本体的解析、存储与查询。
- 1.首先,利用Protégé本体建模工具建立了数控设备故障本体模型,共包含155个概念、61个概念间逻辑关系和122个概念属性关系。
- 2.其次,以RDMS中的故障信息表为逻辑表,基于人工定义的R2RML映射文档中的规则,利用开源r2rml-parser工具实现从RDB到RDF四元组的映射;
- 3.最后,应用Eclipse开发工具和Dorado7展现中间件开发了数控设备故障知识图谱平台,其中知识图谱可视化部分主要采用SPARQL查询和GoJS前台可视化技术实现。
216

被折叠的 条评论
为什么被折叠?



