- 论文通过将三种已建立的诊断技术应用于整个CWRU数据集来提供这样的基准。所有方法都使用平方包络频谱(即平方包络的频谱)作为最终诊断工具,但是在获取包络信号之前使用了不同的预处理步骤。
- 滚动轴承的局部故障会在加速度信号中产生一系列宽带脉冲响应,因为轴承组件会反复出现故障。轴承诊断的关键是,通过幅度解调获得的包络信号通常包含比原始信号更清晰的故障信息。
- 大多数轴承诊断技术的主要工具是包络谱,包络谱:对信号进行hilbert变换(信号处理中的一种常用手段,本质上是卷积)之后,然后取极值,然后对取极值之后得到的一维数据取包络,对包络信号进行FFT变换得到的数据。(横坐标为频率,纵坐标为幅值)包络谱对冲击事件的故障比较敏感。
- 轴承承受的唯一载荷(理论上)是轴和任何附加组件的重量产生的静态重力载荷,尽管有证据表明可能存在动态载荷叠加在此静态负载上。
- 轴承上的唯一径向负载(理论上)是通过6.00点钟位置(而不是3.00点钟位置)作用的静态重力负载。
- envelope analysis of the raw signal:仅包括全带宽原始信号的包络分析(包络平方频谱)。
- cepstrum prewhitening :1.倒谱预白化,将所有频率分量设置为相同的幅度;2.全带宽信号的包络分析(平方包络频谱)。
- benchmark method:1.离散/随机分离(DRS)删除确定性(离散频率)分量;2.频谱峰度以确定最冲动的频带,然后进行带通滤波;3.带通滤波后信号的包络分析(平方包络谱)。
- 论文中使用的DRS设置-滤波器长度N和延迟Δ(以样本数为单位)–是通过反复试验在少量数据集上建立的,其中12k数据选择了N = 16384,Δ= 500,N = 8192,Δ= 500用于48k数据。光谱峰度是使用 Antoni’s Fast Kurtogram 。
- 功率谱密度(power spectral density):单位频率间隔的光功率或噪声功率。
- 新算法可以对P类(P1:数据可能是可诊断的;例如,包络频谱显示了预期故障频率处的离散分量,但它们在频谱中并不占主导地位;P2:潜在可诊断的数据;例如,包络频谱显示拖尾的成分似乎与预期的故障频率一致。)中的数据集进行更全面的诊断或对N类(N1:无法针对指定的轴承故障诊断数据,但存在其他可识别的问题(例如松动);N2:数据不可诊断,并且几乎无法与噪声区分开,包络谱中的轴谐波可能例外。)中的数据集进行成功的诊断。
- 诊断结果似乎与故障尺寸或速度/负载无关,而与组件的功能有关,这对于每种故障尺寸大概都是相同的,但是当安装新轴承时,在故障尺寸之间会有所不同。怀疑这种现象可归因于机械松动,其严重性随每个轴承的安装而改变。
- 最清晰的数据集之一是数据集3007DE,尽管可以通过方法1进行诊断,但使用方法3(基准)进行处理时却具有非常经典的特性。最强的断球谐波是BSF的2倍和4倍,边带间隔为FTF(最强的二阶边带)。 FTF也至少存在三个谐波。
- 许多球故障数据集的另一个有趣特征是,经常有外部和内部种族故障的证据。


- 在(48k数据)频谱(直接使用fft,fft_size=1024)的11-14 kHz区域中通常很明显:轴速度的非常高的谐波。


- 功率谱是信号自相关函数的傅里叶变换,能量谱是信号本身傅立叶变换幅度的平方。

H(t)为Hilbert变换后的时域信号,f(t)为原始时域信号。那么其包络为:Envelop = sqrt(H^2(t)+f^2(t))。


???
???
注:


Method 1 .envelope analysis of the raw signal:仅包括全带宽原始信号的包络分析(包络平方频谱)。
Method 2.cepstrum prewhitening (!!!):

论文对比分析了三种诊断技术在CWRU数据集上的应用,重点在于滚动轴承的故障诊断。关键步骤包括使用平方包络频谱作为诊断工具,以及通过不同的预处理技术提取故障信息。轴承故障诊断依赖于通过幅度解调得到的包络信号,该信号通常包含比原始信号更明显的故障特征。实验表明,诊断效果与故障尺寸、速度/负载无关,而与组件功能有关。倒谱预白化和基准方法(离散/随机分离+频谱峰度)在诊断中表现出较好的性能。
最低0.47元/天 解锁文章
2833

被折叠的 条评论
为什么被折叠?



