ChanYeol666
码龄8年
关注
提问 私信
  • 博客:39,840
    问答:72
    39,912
    总访问量
  • 47
    原创
  • 1,049,825
    排名
  • 17
    粉丝
  • 0
    铁粉

个人简介:在软件学院中学了日语

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2017-01-20
博客简介:

ChanYeol666的博客

查看详细资料
个人成就
  • 获得20次点赞
  • 内容获得14次评论
  • 获得116次收藏
创作历程
  • 1篇
    2022年
  • 12篇
    2021年
  • 35篇
    2020年
成就勋章
TA的专栏
  • 前端基础知识
    5篇
  • webpack
    1篇
  • JavaScript
  • 网络与浏览器
  • HTML + CSS
  • 前端框架
    2篇
  • 读书笔记
  • Python学习笔记
    1篇
  • 知识图谱
    18篇
  • 知识存储
    1篇
  • 知识推理
    1篇
  • 知识融合
    2篇
  • 自然语言处理学习
    7篇
  • 比赛笔记
    1篇
  • CWRU
    3篇
  • 论文笔记
    8篇
兴趣领域 设置
  • 前端
    javascriptcssvue.jsreact.jses6webpackxhtml前端框架
  • 后端
    node.js
  • 移动开发
    flutter
  • 网络与通信
    https
  • 微软技术
    typescript
  • 学习和成长
    面试
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs Deepak

相关工作现有的方法通过仅关注实体特征或以不相交的方式考虑实体和关系的特征学习KG嵌入,相反,我们提出的图注意力模型从整体上捕获了KG中任何给定实体的n跳领域中的多跳和语义相似的关系。我们的方法1.GAT单个GAT层为:输出层:相对注意力aij是使用softmax函数计算领域中所有值的。连接K个注意力头的多头注意力过程如下:最后一层的输出嵌入是使用平均而不是连接操作来计算的,以实现多头注意力:2.关系很重要提出了一个新的嵌入方法,将关系和相邻节点特征结合到注意机制中。定义了一个注
原创
发布博客 2022.01.12 ·
1827 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

tomcat版本更新

目前jdk版本为:jdk 1.8(1.8.0_152)查看tomcat版本打开tomcat文件所在位置,打开bin文件夹D:\apache-tomcat-8.0.46\bin找到version.bat双击打开,发现一闪而过打开version.bat文件在最后加上pause再双击打开,显示当前tomcat版本为更新tomcat打开tomcat下载网页https://tomcat.apache.org/download-10.cgi可以先看看自己...
原创
发布博客 2021.07.30 ·
919 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

git版本更新

参考:https://blog.csdn.net/blingsky123/article/details/107493257最初的版本是git -version版本 > 2.16.1 则使用: git update-git-for-windows版本 2.14.2-2.16.1 则使用: git update版本 <2.14.2 请重新下载安装覆盖打开cmd更新:git update运行查看...
原创
发布博客 2021.07.29 ·
249 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

node版本删除更新

自己旧电脑的版本是:可以尝试多版本管理:或者直接删除旧版本安装新版本参考:https://blog.csdn.net/weixin_43303455/article/details/1080875761.卸载旧版本查看旧版本位置删除相应nodejs文件下载需要的版本http://nodejs.cn/download/current/2.安装需要版本:一路next在系统变量里:Path用户变量:Path3.修改配置及环境1.首..
原创
发布博客 2021.07.25 ·
1257 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Error: Cannot find module ‘webpack-cli/bin/config-yargs‘

加入"webpack-dev-server":"^3.11.2",报错:Error: Cannot find module 'webpack-cli/bin/config-yargs'"webpack":"^5.41.1","webpack-cli":"^4.7.2"webpack-dev-server版本与webpack,webpack-cli最新版本不匹配只能降低webpack,webpack-cli版本yarn add webpack@4.43.0...
原创
发布博客 2021.07.01 ·
90 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

yarn add webpack webpack-cli 报错

error human-signals@2.1.0: The engine "node" is incompatible with this module. Expected version ">=10.17.0". Got "10.13.0"error Found incompatible module.使用:yarn config set ignore-engines true参考:yarn错误The engine "node" is incompatible with this m
原创
发布博客 2021.06.30 ·
511 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

echarts-学习笔记及扩展

可视化库
原创
发布博客 2021.05.17 ·
597 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

为什么选择angular?-学习笔记

使用angular的原因:Angular是一款优秀的前端JS框架,已经被用于Google的多款产品当中。它有一下的特性:良好的应用程序结构; 双向数据绑定; 指令; HTML模版; 可嵌入,注入和测试。优点:模版功能强大丰富,自带了极其丰富的angular指令; 是一个比较完善的前端框架,包含服务,模版,数据双向绑定,模块化,路由,过滤器,依赖注入等所有功能; 自定义指令,自定义指令可以在项目中多次使用; ng模块化比较大胆的引入了Java的一些东西(依赖注入),能够很容易的
原创
发布博客 2021.05.16 ·
316 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Learning Collaborative Agents with Rule Guidance for Knowledge Graph Reasoning-学习笔记

问题和初步问题表述给定一个查询:。KG推理的任务是找到一组对象实体,使得,其中是中缺少的事实三元组。为了与大多数现有作品保持一致,本文只考虑尾部查询。基于符号的方法某些以前的方法是从KG挖掘Horn规则,并通过将这些规则作为基础来预测缺失的事实。 最近的方法AnyBURL(Meilicke et al.,2019)表现出与基于嵌入技术的最先进方法相当的性能。但是,这些方法有局限性。 例如,从不同KG提取的规则可能具有不同的质量,这使得推理者难以选择规则。 图1显示了这种差异。
原创
发布博客 2021.01.08 ·
1164 阅读 ·
0 点赞 ·
2 评论 ·
5 收藏

知识图谱构建-论文笔记

​​​​​Automatic knowledge graph construction based on relational data of power terminal equipment (Su Zheng,Hao Mukai,Zhang Qiang,Chai Bo,Zhao Ting) ​​​​​​​装备保障性验证知识图谱构建方法研究 ​​​​​​​KnowIME: A System to Construct a Knowledge Graph for Intel...
原创
发布博客 2021.01.05 ·
1187 阅读 ·
0 点赞 ·
2 评论 ·
2 收藏

合并外部知识库-学习资料

1.CN-DBPediahttps://wiki.dbpedia.org/DBpedia – A Large-scale, MultilingualKnowledge Base Extracted from Wikipediahttps://pypi.org/project/pyspotlight/http://kw.fudan.edu.cn/apis/cndbpedia/python 简单操作dbpediahttp://openkg.cn/dataset/cndbpediai
原创
发布博客 2021.01.05 ·
311 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Neo4j-学习资料

Jdk11:链接:https://pan.baidu.com/s/1Lxa2k4hrMRtRfVbF9ku-zQ 提取码:9es4Windows下图数据库neo4j的安装: https://www.jianshu.com/p/dc620ca59d19Neo4j版本:4.1.3下载地址:https://neo4j.com/download-center/#communityAPOC 4.3.0-rc01 : neo4j数据库中合并相同节点Neo4j教程:1.https://www.w...
原创
发布博客 2021.01.05 ·
190 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Knowledge Graph Alignment Network with Gated Multi-Hop Neighborhood Aggregation-学习笔记

在图1中,美国是Wikidata中科比·布莱恩特的一跳(直接)邻居。 但是在DBpedia中,它是两跳邻居。在AliNet中,通过门控机制通过在k跳内对其邻域信息进行控制的聚合来学习实体表示。 在不失一般性的前提下,以下我们展示了汇总一跳和两跳邻域信息(k = 2)的情况。 网络结构如图3所示。请注意,AliNet也可以扩展到更多的跃点。具体来说,每个AliNet层都具有多种功能,可在多个跃点内聚合邻域信息。 为了减少噪声信息,我们进一步采用了一种针对远距离邻域聚集的注意机制,以端到端的..
原创
发布博客 2021.01.05 ·
701 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

D2RQ-学习记录

D2RQ下载链接:http://d2rq.org/点击下载d2rq-0.8.1.zip根据mysql下载JDBC driver,我使用的是mysql-connector-java-5.1.44:https://repo1.maven.org/maven2/mysql/mysql-connector-java/5.1.44/mysql-connector-java-5.1.44.jar放到之前解压d2rq-0.8.1压缩包路径的d2rq-0.8.1\lib\db-drivers文件中,替换
原创
发布博客 2020.10.20 ·
432 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Notes on language modeling-COMS W4705: Natural Language Processing-学习笔记

COMS W4705: Natural Language Processing语言模型在广泛的应用中非常有用,最明显的也许是语音识别和机器翻译。 在语音识别中,语言模型与为不同单词的发音建模的声学模型相结合:一种思考的方法是,声学模型会生成大量候选句子以及概率;然后使用语言模型根据这些可能性成为该语言中的句子的可能性对这些可能性重新排序。 语言模型中使用最为广泛的模型叫做Markov模型。Trigram语言模型,这是一类重要的语言模型,直接建立在Markov模型的思想上。 Bias-Varianc
原创
发布博客 2020.10.15 ·
157 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

人工智能之知识图谱-学习笔记

知识图谱研究报告-电子版-20191120在大数据环境下,从互联网开放环境的大数据中获得知识,用这些知识提供智能服务互联网/行业,同时通过互联网可以获得更多的知识。这是一个迭代的相互增强过程,可以实现从互联网信息服务到智能知识服务的跃迁。 王海勋被引用量最高的论文是 2003 年在 KDD 会议上发表的“Mining concept-drifting data streams using ensemble classifiers”。这篇论文提出了一个使用加权集合分类器挖掘概念漂移数据流的一般框架,经过
原创
发布博客 2020.10.13 ·
476 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Titanic: Machine Learning from Disaster-kaggle入门赛-学习笔记

Titanic: Machine Learning from Disaster对实验用的数据的认识,数据中的特殊点/离群点的分析和处理,特征工程(feature engineering)很重要。 注意模型融合(model ensemble)。
原创
发布博客 2020.10.13 ·
193 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

HHT变换基本理论-学习笔记

HHT变换基本理论希尔伯特黄变换(HHT变换)是1998年由NordenEHuang等人提出的一种信号分析方法。是一种能够有效分析线性/非线性,平稳/非平稳信号的时频分析方法。核心是经验模态分解(简称EMD)和希尔伯特变换(简称HT),前者是信号分解(或者信号变换)方法,后者是信号分析(谱分析)方法。 时频分析方法的提出主要是为了对非线性非平稳信号进行有效的信号分析,从而得到信号在局部时间上的频率信息,即频率随时间的变化情况。 短时傅立叶变换公式表示:在时间轴上移动窗函数,就能够对信号x(t)连续的
原创
发布博客 2020.10.13 ·
2672 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

Rule-Guided Compositional Representation Learning on Knowledge Graphs-学习笔记

Rule-Guided Compositional Representation Learning on Knowledge Graphs1.表示学习知识图谱(KG)是将KG的实体和关系嵌入到低维连续向量空间中。2.可以使用Horn规则在语义级别上组合路径和关联关系,以提高学习路径上KG嵌入的精度,并增强表示学习的可解释性。3.DPTransE共同构建了KG的潜在特征和图形特征之间的交互,以提供精确而有区别的嵌入。4.路径增强模型:由于多跳路径可以提供KG中看似未连接的实体之间的关系,因此K
原创
发布博客 2020.10.13 ·
998 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

A comparative study of various methods of bearing faults diagnosis using the CWRU data.-学习笔记

A comparative study of various methods of bearing faults diagnosis using the case Western Reserve University data.Fault Diagnosis Methods:1.Temporal AnalysisRMS:root mean square,根均方(RMS或RMS)被定义为平方根的的均方(该算术平均值的的方形的一组数字的)。crest factor:波峰因数是波形的参..
原创
发布博客 2020.10.13 ·
631 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多