Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs Deepak
相关工作现有的方法通过仅关注实体特征或以不相交的方式考虑实体和关系的特征学习KG嵌入,相反,我们提出的图注意力模型从整体上捕获了KG中任何给定实体的n跳领域中的多跳和语义相似的关系。我们的方法1.GAT单个GAT层为:输出层:相对注意力aij是使用softmax函数计算领域中所有值的。连接K个注意力头的多头注意力过程如下:最后一层的输出嵌入是使用平均而不是连接操作来计算的,以实现多头注意力:2.关系很重要提出了一个新的嵌入方法,将关系和相邻节点特征结合到注意机制中。定义了一个注






