给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
- 节点的左子树只包含小于当前节点的数。
- 节点的右子树只包含大于当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/validate-binary-search-tree
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
————————————————————————
解题思路:
- 二叉搜索树的特性是对于某一节点,其左子树的所有节点的值都小于该结点,其右子树的所有节点的值都大于该节点的值。因此可以想到通过中序遍历该二叉树。
- 二叉搜索树的中序遍历得到的数据是排序的,其值从小到大排序,如果在遍历过程中遇到某一个结点值小于前一个结点的值,则可以确定该二叉树不是二叉搜索树。
其python3代码如下:
# Definition for a binary tree node.
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
def isValidBST(self, root: TreeNode) -> bool:
num = [float('-inf')] # 用于保存最近遍历的节点的val
def midsearch(root): # 中序遍历
if not root: # 递归停止条件
return True
if not midsearch(root.left): # 判断左子树是否符合二叉搜索树性质
return False
if root.val <= num[0]: # 判断当前节点的val是否大于前一个节点的val
return False
num[0] = root.val # 将最新的节点val值更新num值
if not midsearch(root.right): # 判断右子树是否符合二叉搜索树的性质
return False
return True
return midsearch(root)
代码的时间复杂度为O(n),空间复杂度为O(n)。
279

被折叠的 条评论
为什么被折叠?



