tf.truncated_normal 与 tf.random_normal 用法

tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

截断的正态分布中输出随机值。
生成的值服从具有指定平均值和标准偏差的正态分布,如果生成的值大于平均值2个标准偏差的值则丢弃重新选择。

在正态分布的曲线中,横轴区间(μ-σ,μ+σ)内的面积为68.268949%。
横轴区间(μ-2σ,μ+2σ)内的面积为95.449974%。
横轴区间(μ-3σ,μ+3σ)内的面积为99.730020%。
X落在(μ-3σ,μ+3σ)以外的概率小于千分之三,在实际问题中常认为相应的事件是不会发生的,基本上可以把区间(μ-3σ,μ+3σ)看作是随机变量X实际可能的取值区间,这称之为正态分布的“3σ”原则。
在tf.truncated_normal中如果x的取值在区间(μ-2σ,μ+2σ)之外则重新进行选择。这样保证了生成的值都在均值附近。

参数:

  • shape: 一维的张量,也是输出的张量。
  • mean: 正态分布的均值。
  • stddev: 正态分布的标准差。
  • dtype: 输出的类型。
  • seed: 一个整数,当设置之后,每次生成的随机数都一样。
  • name: 操作的名字。
这个函数产生正态分布,均值和标准差自己设定。这是一个截断的产生 正态分布的函数,就是说产生 正态分布的值如果与均值的差值大于两倍的标准差,那就重新生成。和一般的 正态分布的产生随机数据比起来,这个函数产生的随机数与均值的差距不会超过两倍的标准差,但是一般的别的函数是可能的。

例如:

[python] view plain copy
  1. import tensorflow as tf;  
  2. import numpy as np;  
  3. import matplotlib.pyplot as plt;  
  4.   
  5. c = tf.truncated_normal(shape=[3,10], mean=0, stddev=1)  
  6.   
  7. with tf.Session() as sess:  
  8.     print sess.run(c)  
输出:

[[ 1.95758033 -0.68666345 -1.83860338  0.78213859 -1.08119416 -1.44530308
   0.38035342  0.57904619 -0.57145643 -1.22899497]
 [-0.75853795  0.48202974  1.03464043  1.19210851 -0.15739718  0.8506189
   1.18259966 -0.99061841 -0.51968449  1.38996458]
 [ 1.05636907 -0.02668529  0.64182931  0.4110294  -0.4978295  -0.64912242
   1.27779591 -0.01533993  0.47417602 -1.28639436]]

tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

从正态分布中输出随机值。
参数:

  • shape: 一维的张量,也是输出的张量。
  • mean: 正态分布的均值。
  • stddev: 正态分布的标准差。
  • dtype: 输出的类型。
  • seed: 一个整数,当设置之后,每次生成的随机数都一样。
  • name: 操作的名字。
a = tf.Variable(tf.random_normal([2,2],seed=1))
init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    print(sess.run(a))
输出:
[[-0.81131822  1.48459876]
[ 0.06532937 -2.44270396]]

这里我看了几篇博客总结了一下,欢迎大家学习!

原文:http://blog.csdn.net/UESTC_C2_403/article/details/72235565?locationNum=6&fps=1
          http://blog.csdn.net/u013713117/article/details/65446361


©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页