java Map 平衡树 红黑树

这篇博客详细介绍了AVL树和红黑树的数据结构及其在Java中的实现。内容包括如何判断一棵二分搜索树是否是AVL树、是否平衡,以及如何进行旋转操作以保持平衡。此外,还展示了红黑树的插入、删除节点的操作,并通过颜色调整维护红黑树的性质。
摘要由CSDN通过智能技术生成

平衡树

红黑树

平衡树


public class AVLTree<K extends Comparable<K>, V> {

    private class Node{
        public K key;
        public V value;
        public Node left, right;
        public int height;

        public Node(K key, V value){
            this.key = key;
            this.value = value;
            left = null;
            right = null;
            height = 1;
        }
    }

    private Node root;
    private int size;

    public AVLTree(){
        root = null;
        size = 0;
    }

    public int getSize(){
        return size;
    }

    public boolean isEmpty(){
        return size == 0;
    }

    // 判断该二叉树是否是一棵二分搜索树
    public boolean isBST(){

        ArrayList<K> keys = new ArrayList<>();
        inOrder(root, keys);
        for(int i = 1 ; i < keys.size() ; i ++)
            if(keys.get(i - 1).compareTo(keys.get(i)) > 0)
                return false;
        return true;
    }
    //      Node
    //         y:N0
    //       /    \
    //      x:N1   T4:N2
    //     /    \
    //    z:N3  T3:N4
    //   /    \
    // T1:N5   T2:N6

    //   inOrder y x  z  T1 null
    //
    //  T1 keys.add N5
    //  T1 inOrder-right null
    //  z  keys.add N3
    //  z  inOrder-right
    //  T2 inOrder-left null
    //  T2 keys.add N6
    //  T2 inOrder-right null
    //  -->x  -->y
    //  y  keys.add N0
    //  y  inOrder-right
    //  T4 inOrder-left null
    //  T4  keys.add N2
    //  T4 inOrder-right null
    private void inOrder(Node node, ArrayList<K> keys){

        if(node == null)
            return;

        inOrder(node.left, keys);
        keys.add(node.key);
        inOrder(node.right, keys);
    }

    // 判断该二叉树是否是一棵平衡二叉树
    public boolean isBalanced(){
        return isBalanced(root);
    }

    // 判断以Node为根的二叉树是否是一棵平衡二叉树,递归算法
    private boolean isBalanced(Node node){

        if(node == null)
            return true;

        int balanceFactor = getBalanceFactor(node);
        if(Math.abs(balanceFactor) > 1)
            return false;
        return isBalanced(node.left) && isBalanced(node.right);
    }

    // 获得节点node的高度
    private int getHeight(Node node){
        if(node == null)
            return 0;
        return node.height;
    }

    // 获得节点node的平衡因子
    private int getBalanceFactor(Node node){
        if(node == null)
            return 0;
        return getHeight(node.left) - getHeight(node.right);
    }

    // 对节点y进行向右旋转操作,返回旋转后新的根节点x
    //        y                              x
    //       / \                           /   \
    //      x   T4     向右旋转 (y)        z     y
    //     / \       - - - - - - - ->    / \   / \
    //    z   T3                       T1  T2 T3 T4
    //   / \
    // T1   T2
    private Node rightRotate(Node y) {
        Node x = y.left;
        Node T3 = x.right;

        // 向右旋转过程
        x.right = y;
        y.left = T3;

        // 更新height
        y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;

        return x;
    }

    // 对节点y进行向左旋转操作,返回旋转后新的根节点x
    //    y                             x
    //  /  \                          /   \
    // T1   x      向左旋转 (y)       y     z
    //     / \   - - - - - - - ->   / \   / \
    //   T2  z                     T1 T2 T3 T4
    //      / \
    //     T3 T4
    private Node leftRotate(Node y) {
        Node x = y.right;
        Node T2 = x.left;

        // 向左旋转过程
        x.left = y;
        y.right = T2;

        // 更新height
        y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;

        return x;
    }

    // 向二分搜索树中添加新的元素(key, value)
    public void add(K key, V value){
        root = add(root, key, value);
    }

    //         root
    //         y:N0
    //       /    \
    //      x:N1   T4:N2
    //     /    \
    //    z:N3  T3:N4
    //   /    \
    // T1:N5   T2:N6
    //步骤:add 后
    //         y:N0
    //       /    \
    //      x:N1   T4:N2
    //     /    \
    //   z:N3   T3:N4
    //  /    \
    //T1:N5   T2:N6
    //          \
    //          M:Nm
    //
    //步骤: 当前节点z:N3 height = 1 + 2  balance = 1 - 2 = -1
    //步骤: 当前节点x:N1 height = 1 + 3  balance = 3 - 1 = -2

    //              root
    //         y:N0
    //       /    \
    //H:4   x:N1   T4:N2
    //     /    \
    //H:3 z:N3   T3:N4
    //  /    \
    //T1:N5   T2:N6 H:2
    //          \
    //          M:Nm
    //
    //步骤: T2:N6 balance = -1 return
    //步骤: z:N3 balance = 1-2=-1 return                        H:4         y:N0
    //步骤: x:N1 balance = 3-1=2,-1  LR return                             /    \
    //(1:L)H:3     T2:N6    | H:4        x:N1       |(2:R) H:3      T2:N6   T4:N2
    //            /    \    |          /     \      |             /       \
    //     H:2  z:N3   M:Nm | H:3    T2:N6   T3:N4  |      H:2  z:N3   H:2 x:N1
    //          /           |        /   \          |          /          /   \
    //        T1:N5         | H:2  z:N3  M:Nm       |       T1:N5       M:Nm   T3:N4
    //                      |      /                |
    //                      |    T1:N5              |
    //步骤:y:N0 balance = 3-1=2,2-2=0  R return
    //(1:R)                     T2:N6              H:4
    //                       /         \
    //             H:2     z:N3        y:N0        H:3
    //                    /           /     \
    //                  T1:N5   H:2 x:N1    T4:N2  H:1
    //                              /   \
    //                           M:Nm   T3:N4
    //步骤:root = T2
    //

    // 向以node为根的二分搜索树中插入元素(key, value),递归算法
    // 返回插入新节点后二分搜索树的根
    private Node add(Node node, K key, V value){

        if(node == null){
            size ++;
            return new Node(key, value);
        }

        if(key.compareTo(node.key) < 0)
            node.left = add(node.left, key, value);
        else if(key.compareTo(node.key) > 0)
            node.right = add(node.right, key, value);
        else // key.compareTo(node.key) == 0
            node.value = value;

        // 更新height
        node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));

        // 计算平衡因子
        int balanceFactor = getBalanceFactor(node);

        // 平衡维护
        // LL
        if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0)
            return rightRotate(node);

        // RR
        if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0)
            return leftRotate(node);

        // LR
        if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
            node.left = leftRotate(node.left);
            return rightRotate(node);
        }

        // RL
        if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
            node.right = rightRotate(node.right);
            return leftRotate(node);
        }

        return node;
    }

    // 返回以node为根节点的二分搜索树中,key所在的节点
    private Node getNode(Node node, K key){

        if(node == null)
            return null;

        if(key.equals(node.key))
            return node;
        else if(key.compareTo(node.key) < 0)
            return getNode(node.left, key);
        else // if(key.compareTo(node.key) > 0)
            return getNode(node.right, key);
    }

    public boolean contains(K key){
        return getNode(root, key) != null;
    }

    public V get(K key){

        Node node = getNode(root, key);
        return node == null ? null : node.value;
    }

    public void set(K key, V newValue){
        Node node = getNode(root, key);
        if(node == null)
            throw new IllegalArgumentException(key + " doesn't exist!");

        node.value = newValue;
    }

    // 返回以node为根的二分搜索树的最小值所在的节点
    private Node minimum(Node node){
        if(node.left == null)
            return node;
        return minimum(node.left);
    }

    // 从二分搜索树中删除键为key的节点
    public V remove(K key){

        Node node = getNode(root, key);
        if(node != null){
            root = remove(root, key);
            return node.value;
        }
        return null;
    }


    //                          T2:N6              H:4
    //                       /         \
    //             H:2     z:N3        y:N0        H:3
    //                    /           /     \
    //                  T1:N5   H:2 x:N1    T4:N2  H:1
    //                              /   \
    //                           M:Nm   T3:N4
    //  del x:N1
    //                          T2:N6              H:4
    //                       /         \
    //             H:2     z:N3        y:N0        H:3
    //                    /           /     \
    //                  T1:N5   H:2 T3:N4   T4:N2  H:1
    //                              /
    //                           M:Nm
    //
    // 然后就开始 旋 , 但还需要考虑到细节问题(很重要)
    //

    private Node remove(Node node, K key){

        if( node == null )
            return null;

        Node retNode;
        if( key.compareTo(node.key) < 0 ){
            node.left = remove(node.left , key);
            // return node;
            retNode = node;
        }
        else if(key.compareTo(node.key) > 0 ){
            node.right = remove(node.right, key);
            // return node;
            retNode = node;
        }
        else{   // key.compareTo(node.key) == 0

            // 待删除节点左子树为空的情况
            if(node.left == null){
                Node rightNode = node.right;
                node.right = null;
                size --;
                // return rightNode;
                retNode = rightNode;
            }

            // 待删除节点右子树为空的情况
            else if(node.right == null){
                Node leftNode = node.left;
                node.left = null;
                size --;
                // return leftNode;
                retNode = leftNode;
            }

            // 待删除节点左右子树均不为空的情况
            else{
                // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
                // 用这个节点顶替待删除节点的位置
                Node successor = minimum(node.right);
                //successor.right = removeMin(node.right);
                successor.right = remove(node.right, successor.key);
                successor.left = node.left;

                node.left = node.right = null;

                // return successor;
                retNode = successor;
            }
        }

        if(retNode == null)
            return null;

        // 更新height
        retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));

        // 计算平衡因子
        int balanceFactor = getBalanceFactor(retNode);

        // 平衡维护
        // LL
        if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0)
            return rightRotate(retNode);

        // RR
        if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0)
            return leftRotate(retNode);

        // LR
        if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
            retNode.left = leftRotate(retNode.left);
            return rightRotate(retNode);
        }

        // RL
        if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
            retNode.right = rightRotate(retNode.right);
            return leftRotate(retNode);
        }

        return retNode;
    }

}

红黑树


public class RBTree<K extends Comparable<K>, V> {

    private static final boolean RED = true;
    private static final boolean BLACK = false;

    private class Node{
        public K key;
        public V value;
        public Node left, right;
        public boolean color;

        public Node(K key, V value){
            this.key = key;
            this.value = value;
            left = null;
            right = null;
            color = RED;
        }
    }

    private Node root;
    private int size;

    public RBTree(){
        root = null;
        size = 0;
    }

    public int getSize(){
        return size;
    }

    public boolean isEmpty(){
        return size == 0;
    }

    // 判断节点node的颜色
    private boolean isRed(Node node){
        if(node == null)
            return BLACK;
        return node.color;
    }

    //   node                     x
    //  /   \     左旋转         /  \
    // T1   x   --------->   node   T3
    //     / \              /   \
    //    T2 T3            T1   T2
    private Node leftRotate(Node node){

        Node x = node.right;

        // 左旋转
        node.right = x.left;
        x.left = node;

        x.color = node.color;
        node.color = RED;

        return x;
    }

    //     node                   x
    //    /   \     右旋转       /  \
    //   x    T2   ------->   y   node
    //  / \                       /  \
    // y  T1                     T1  T2
    private Node rightRotate(Node node){

        Node x = node.left;

        // 右旋转
        node.left = x.right;
        x.right = node;

        x.color = node.color;
        node.color = RED;

        return x;
    }

    // 颜色翻转
    private void flipColors(Node node){

        node.color = RED;
        node.left.color = BLACK;
        node.right.color = BLACK;
    }

    // 向红黑树中添加新的元素(key, value)
    public void add(K key, V value){
        root = add(root, key, value);
        root.color = BLACK; // 最终根节点为黑色节点
    }

    //    3:N3   4:N5  5:N6  1:N0 2:N2   6:N4    add -> 3.5:Nm
    //           c:black   3:N3           --|--> c:black     4:N5       --|-->    c:black       4:N5
    //                   /      \           |               /             |                   /      \
    //                         4:N5 c:red   |    c:red   3:N3             |       c:black   3:N3     5:N6   c:black
    //
    //
    //  c:black       4:N5                |  c:black       4:N5                |  c:black       4:N5
    //              /      \              |              /      \              |              /      \
    //  c:black   3:N3     5:N6   c:black |  c:black   3:N3     5:N6   c:black |  c:black   2:N2     5:N6   c:black
    //            /                       |            /                       |            /   \
    //  c:red   1:N0                      |  c:red   2:N2                      |  c:red   1:N0   3:N3 c:red
    //                                    |          /                         |
    //                                    |  c:red 1:N0                        |
    //
    // c:black               4:N5                                            c:red         2:N2 —— 4:N5    c:black
    //             /                     \                                           /   \                  \
    // c:red     2:N2        c:black     6:N4     红黑树----->2-3树     c:black 1:N0  3.5:Nm c:black     6:N4   c:black
    //           /   \                   /                                           /                     /
    // c:black 1:N0   3.5:Nm c:black c:red 5:N6                                c:red 3:N3               c:red 5:N6
    //               /
    //          c:red 3:N3
    //
    //维持root 节点是全部数据的均衡值
    //add  42 --> 37 --> 12
    //add  42 --> 37 --> 40
    // 最终都会选择保持  (1) 37 (2) 40在中间
    //    c:black    42  ----> (R) ---->  c:black   37
    //             /                              /    \
    //    c:red   37                      c:red 12       42  c:red
    //           /
    //    c:red 12
    //
    //    c:black    42  ----> (L) ---->  c:black   42  ---->(R)---->同上    40
    //             /                              /                        /   \                                                          
    //    c:red   37                     c:red  40                       37     42
    //              \                          /
    //             40 c:red             c:red 37
    //
    //
    // 向以node为根的红黑树中插入元素(key, value),递归算法
    // 返回插入新节点后红黑树的根
    private Node add(Node node, K key, V value){

        if(node == null){
            size ++;
            return new Node(key, value); // 默认插入红色节点
        }

        if(key.compareTo(node.key) < 0)
            node.left = add(node.left, key, value);
        else if(key.compareTo(node.key) > 0)
            node.right = add(node.right, key, value);
        else // key.compareTo(node.key) == 0
            node.value = value;

        if (isRed(node.right) && !isRed(node.left))
            node = leftRotate(node);

        if (isRed(node.left) && isRed(node.left.left))
            node = rightRotate(node);

        if (isRed(node.left) && isRed(node.right))
            flipColors(node);

        return node;
    }

    // 返回以node为根节点的二分搜索树中,key所在的节点
    private Node getNode(Node node, K key){

        if(node == null)
            return null;

        if(key.equals(node.key))
            return node;
        else if(key.compareTo(node.key) < 0)
            return getNode(node.left, key);
        else // if(key.compareTo(node.key) > 0)
            return getNode(node.right, key);
    }

    public boolean contains(K key){
        return getNode(root, key) != null;
    }

    public V get(K key){

        Node node = getNode(root, key);
        return node == null ? null : node.value;
    }

    public void set(K key, V newValue){
        Node node = getNode(root, key);
        if(node == null)
            throw new IllegalArgumentException(key + " doesn't exist!");

        node.value = newValue;
    }

    // 返回以node为根的二分搜索树的最小值所在的节点
    private Node minimum(Node node){
        if(node.left == null)
            return node;
        return minimum(node.left);
    }

    // 删除掉以node为根的二分搜索树中的最小节点
    // 返回删除节点后新的二分搜索树的根
    private Node removeMin(Node node){

        if(node.left == null){
            Node rightNode = node.right;
            node.right = null;
            size --;
            return rightNode;
        }

        node.left = removeMin(node.left);
        return node;
    }

    // 从二分搜索树中删除键为key的节点
    public V remove(K key){

        Node node = getNode(root, key);
        if(node != null){
            root = remove(root, key);
            return node.value;
        }
        return null;
    }

    private Node remove(Node node, K key){

        if( node == null )
            return null;

        if( key.compareTo(node.key) < 0 ){
            node.left = remove(node.left , key);
            return node;
        }
        else if(key.compareTo(node.key) > 0 ){
            node.right = remove(node.right, key);
            return node;
        }
        else{   // key.compareTo(node.key) == 0

            // 待删除节点左子树为空的情况
            if(node.left == null){
                Node rightNode = node.right;
                node.right = null;
                size --;
                return rightNode;
            }

            // 待删除节点右子树为空的情况
            if(node.right == null){
                Node leftNode = node.left;
                node.left = null;
                size --;
                return leftNode;
            }

            // 待删除节点左右子树均不为空的情况

            // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
            // 用这个节点顶替待删除节点的位置
            Node successor = minimum(node.right);
            successor.right = removeMin(node.right);
            successor.left = node.left;

            node.left = node.right = null;

            return successor;
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值