从中序与后序遍历序列构造二叉树

根据一棵树的中序遍历与后序遍历构造二叉树
假设树中没有重复的元素

中序遍历 inorder = [9,3,15,20,7]
后序遍历 postorder = [9,15,7,20,3]
3
/ \
9 20
… / \
… 15 7

以后序数组的最后一个元素为切割点,先切中序数组,根据中序数组,反过来再切后序数组。一层一层切下去,每次后序数组最后一个元素就是节点元素。

第一步:如果数组大小为0,说明是空节点
第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。
第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点
第四步:切割中序数组,切成中序左数组和中序右数组
第五步:切割后序数组,切成后序左数组和后序右数组
第六步:递归处理左区间和右区间

TreeNode* traversal(vector<int>& inorder, vector<int>& postorder) {
	// 第一步
	if (postorder.size() == 0) return nullptr;
	// 第二步:后序遍历数组最后一个元素,就是当前的中间节点
	int rootValue = postordered[postorder.size() - 1];
	TreeNode* root = new TreeNode(rootValue);
	// 叶子节点
	if (postorder.size() == 1) return root;
	// 第三步:找切割点
	int delimiterIndex;
	for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++)
	{
		if (inorder[delimiterIndex] == rootValue) break;
	}
	// 第四步:切割中序数组,得到中序左数组和中序右数组
	// 第五步:切割后序数组,得到后序左数组和后序右数组
	// 第六步:
	root->left = traversal(中序左数组,后序左数组);
	root->right = traversal(中序右数组,后序右数组);
	return root;
}

首先要切割中序数组
切割点在后序数组的最后一个元素(比如根节点),就是用这个元素来切割中序数组的,所以必要先切割中序数组。
在这里插入图片描述
中序数组切割,找到切割点(后序数组的最后一个元素)在中序数组的位置,然后切割

// 找到中序遍历的切割点
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++)
{
	if (inorder[delimiterIndex] == rootValue) break;
}

vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end());

然后切割后序数组
首先后序数组的最后一个元素不能要了,这是切割点,也是当前二叉树中间节点的元素,已经用过了。
此时有一个很重的点,就是中序数组大小一定是和后序数组的大小相同的(这是必然)。

中序数组我们都切成了左中序数组和右中序数组了,那么后序数组就可以按照左中序数组的大小来切割,切成左后序数组和右后序数组。

// postorder 舍弃末尾元素,因为这个元素就是中间节点,已经用过了
postorder.resize(postorder.size() - 1);

// 左闭右开,注意这里使用了左中序数组大小作为切割点:[0, leftInorder.size)
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
// [leftInorder.size(), end)
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());

此时,中序数组切成了左中序数组和右中序数组,后序数组切割成左后序数组和右后序数组。
接下来递归。

class Solution {
private:
    TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
        if (postorder.size() == 0) return NULL;

        // 后序遍历数组最后一个元素,就是当前的中间节点
        int rootValue = postorder[postorder.size() - 1];
        TreeNode* root = new TreeNode(rootValue);

        // 叶子节点
        if (postorder.size() == 1) return root;

        // 找到中序遍历的切割点
        int delimiterIndex;
        for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }

        // 切割中序数组
        // 左闭右开区间:[0, delimiterIndex)
        vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
        // [delimiterIndex + 1, end)
        vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );

        // postorder 舍弃末尾元素
        postorder.resize(postorder.size() - 1);

        // 切割后序数组
        // 依然左闭右开,注意这里使用了左中序数组大小作为切割点
        // [0, leftInorder.size)
        vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
        // [leftInorder.size(), end)
        vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());

        root->left = traversal(leftInorder, leftPostorder);
        root->right = traversal(rightInorder, rightPostorder);

        return root;
    }
public:
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if (inorder.size() == 0 || postorder.size() == 0) return NULL;
        return traversal(inorder, postorder);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值