力扣——139. 单词拆分,140. 单词拆分 II

目录

139. 单词拆分

题目

题解

140. 单词拆分 II

题目

题解


139. 单词拆分

题目

给定一个非空字符串 s 和一个包含非空单词的列表 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。

说明:

  • 拆分时可以重复使用字典中的单词。
  • 你可以假设字典中没有重复的单词。

示例 1:

输入: s = "leetcode", wordDict = ["leet", "code"]
输出: true
解释: 返回 true 因为 "leetcode" 可以被拆分成 "leet code"。

示例 2:

输入: s = "applepenapple", wordDict = ["apple", "pen"]
输出: true
解释: 返回 true 因为 "applepenapple" 可以被拆分成 "apple pen apple"。
     注意你可以重复使用字典中的单词。

示例 3:

输入: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
输出: false

题解

方法一:动态规划

思路

定义 dp[i] 表示字符串 s 前 i 个字符组成的字符串 s[0..i-1] 是否能被空格拆分成若干个字典中出现的单词。

通过遍历枚举 s[0..i-1] 中的分割点 j ,看 s[0..j-1] 组成的字符串 s1(默认 j=0 时 s1 为空串)和 s[ j-1..i ] 组成的字符串 s2 是否都合法,如果两个字符串均合法,那么按照定义s1和s2拼接成的字符串也同样合法。由于计算到 dp[i] 时我们已经计算出了 dp[0..i-1] 的值,因此字符串 s1 是否合法可以直接由 dp[ j ] 得知,剩下的我们只需要看 s2 是否合法,因此我们可以得出转移方程:dp[ i ]=dp[ j ] && check( s[ j..i−1 ] ),其中 check(s[j..i-1] 表示子串 s[j..i-1] 是否出现在字典中。在 [ 0..i ] 中 只要有一个 j 满足条件则直接将dp[i] 置 true ,跳出本次遍历,i++ 。

public class Solution {
    public boolean wordBreak(String s, List<String> wordDict) {
        Set<String> wordDictSet = new HashSet(wordDict);
        boolean[] dp = new boolean[s.length() + 1];
        dp[0] = true;
        for (int i = 1; i <= s.length(); i++) {
            for (int j = 0; j < i; j++) {
                if (dp[j] && wordDictSet.contains(s.substring(j, i))) {
                    dp[i] = true;
                    break;
                }
            }
        }
        return dp[s.length()];
    }
}

// 作者:LeetCode-Solution
// 链接:https://leetcode-cn.com/problems/word-break/solution/dan-ci-chai-fen-by-leetcode-solution/
// 来源:力扣(LeetCode)
// 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 


140. 单词拆分 II

题目

给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,在字符串中增加空格来构建一个句子,使得句子中所有的单词都在词典中。返回所有这些可能的句子。

说明:

  • 分隔时可以重复使用字典中的单词。
  • 你可以假设字典中没有重复的单词。

示例 1:

输入:
s = "catsanddog"
wordDict = ["cat", "cats", "and", "sand", "dog"]
输出:
[
  "cats and dog",
  "cat sand dog"
]

示例 2:

输入:
s = "pineapplepenapple"
wordDict = ["apple", "pen", "applepen", "pine", "pineapple"]
输出:
[
  "pine apple pen apple",
  "pineapple pen apple",
  "pine applepen apple"
]
解释: 注意你可以重复使用字典中的单词。

示例 3:

输入:
s = "catsandog"
wordDict = ["cats", "dog", "sand", "and", "cat"]
输出:
[]

题解

对于字符串 s,如果某个前缀是单词列表中的单词,则拆分出该单词,然后对 s 的剩余部分继续拆分,如果可以将整个字符串 s 拆分成单词列表中的单词,则得到一个句子,继续拆分的剩余部分会存在多种拆分的组合。在对 s 的剩余部分拆分得到一个句子之后,将拆分出的第一个单词(即 s 的前缀)添加到句子的头部,即可得到一个完整的句子。上述过程可以通过回溯实现。

class Solution {
    public List<String> wordBreak(String s, List<String> wordDict) {
        Map<Integer, List<List<String>>> map = new HashMap<Integer, List<List<String>>>();
        List<List<String>> wordBreaks = backtrack(s, s.length(), new HashSet<String>(wordDict), 0, map);
        List<String> breakList = new LinkedList<String>();
        for (List<String> wordBreak : wordBreaks) {
            breakList.add(String.join(" ", wordBreak));
        }
        return breakList;
    }

    public List<List<String>> backtrack(String s, int length, Set<String> wordSet, int index, Map<Integer, List<List<String>>> map) {
        if (!map.containsKey(index)) {
            List<List<String>> wordBreaks = new LinkedList<List<String>>();
            if (index == length) {
                wordBreaks.add(new LinkedList<String>());
            }
			//遍历当前迭代层所有第一个单词(第一个单词 Word_i)与后续剩余部分组合的可能
            for (int i = index + 1; i <= length; i++) {
                String word = s.substring(index, i);//i从索引位置index开始往后找可拆分的第一个单词
                if (wordSet.contains(word)) {
					//找到后第一个单词后再将i作为索引位置往后找下一层迭代的第一个单词,并返回剩余部分所有的组合与第一个单词组成句子
                    List<List<String>> nextWordBreaks = backtrack(s, length, wordSet, i, map);//nextWordBreaks存放固定的 Word_i 的句子组合
					
					//插入第一个单词到首位
                    for (List<String> nextWordBreak : nextWordBreaks) {
                        LinkedList<String> wordBreak = new LinkedList<String>(nextWordBreak);
                        wordBreak.offerFirst(word);
                        wordBreaks.add(wordBreak);//wordBreaks存放当前迭代层所有 ∑Word_i(第一个单词)的句子组合的情况,Word_i(第一个单词)会不一样
                    }
                }
            }
            map.put(index, wordBreaks);
        }
        return map.get(index);
    }
}

作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/word-break-ii/solution/dan-ci-chai-fen-ii-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

心得

139. 单词拆分 采用的是动态规划 ;140. 单词拆分 II 采用的是回溯算法

动态规划求是否有解、回溯算法求所有具体解

  • 题目问「一个问题的所有的具体解」,一般而言使用回溯算法完成。
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页