android 实现算法模型部署方案 android 部署算法和打包demo 方案1 //在Maiacivate 中调用,例如:YOLOv5.init(getAssets(), USE_GPU); //getAssets() 是用来访问和加载asset 下的模型,网页,txt等内容,asset下的文件会打包在apk中,方法1:常用的方式是cp到sdk中;方法2 是getasset 的方法读取。//在使用时需要引入头文件#include <android/asset_man...
人脸识别-人脸建库学习:Sqlite3 的基本使用 注:参考各路大佬链接:1.https://github.com/soloist-v/yolov5_for_rknn2.https://github.com/littledeep/YOLOv5-RK3399Pro3.https://github.com/mrwangwg123/my-rknn-yolov5一.转换思路: 1。基于U官方版本代码训练。 2。修改rknn 1.7 不支持的op 3. 后处理切出到网络转换网络之外...
人脸识别-人脸建库学习:记录1 注:记录说明:人脸识别系统中,人脸特征地库的存储是重要部分之一,由于个人研究算法至今实现人脸底库建立仅做了简单仿真,对面板识别机器(嵌入式端建库),因此开展知识补充和学习。目标:1.学习 sqlit3 c++ 版本的基本使用2.人脸1xn维特征的建立、插入、修改和批量建立3. 实现1:N 人脸库对比查找4.考虑优化方案一.本次记录学习基于sqlit3 c++ 版本人脸建库可参考的code阅读链接1.基于瑞心微rk 源码中代码:https://github.com/BPI-
CVPR2022学习-人脸识别:An Efficient Training Approach for Very Large Scale Face Recognition 看标题大概的理解-其解决的问题:现阶段我们训练人脸提特征网络,随着人脸ID数据的增加,dataloader和fc层的计算导致硬件开销极大。训练过程中理论上希望将大量数据集中的ID都用上,作者提出这篇文章,能够在一定层度上缓解大数据量情况下,dataloader和fc层参数量的限制。 读文章前大致看了下代码,作者提出数据存储加载方式以使用迭代器加载2个dataloader(该方式在多任务以及多标签中也会经常使用,感觉算是技巧吧,具体论文中的内容后续阅读记录)。Abstrac...
服务器搭建Tensorrt 转换Yolov5实例 本方案针对服务器端搭建tensorrt 环境,不想搭建docker 环境的情况。一.服务器端搭建Tensort 环境目前使用的是公司已搭建好的训练服务器,服务器中已经配置好cuda cudnn。由于训练服务器分配的用户无sudo 权限,因此在使用tensorrt时不能直接安装在/usr/下。Tensorrt tar 安装方式可避免安装问题,可指定路径解压后直接使用,具体使用方式如下。1.首先需要知道自己所使用的训练服务器安装的cuda 版本,具体如何查询可自行百度哈。本博客仅介绍。如果自己的电脑
android项目调用c工程ncnn检测与分类问题记录 人脸识别:1 基于ncnn实现人脸识别参考ncnn c工程:https://github.com/MirrorYuChen/ncnn_example2 人脸检测实现:基于ncnn版本rentinaface+添加几种分类器,识别参考:https://github.com/GRAYKEY/mobilefacenet_android3 在原参考开源项目java调用c的接口使用参考2工程中Face.java代码(包含初始化模型定义,多线程以及人脸识别等)注意:java调用接口的定义native x(
视频帧检测个人code记录 #检测模型调用函数: 基于detectorn 框架:# 其中detection 是基于回归的框架def prepare(): if not torch.cuda.is_available(): sys.exit("Need a CUDA device to run the code.") # cfg_file = 'voc2012.yaml' cfg...
多目标跟踪 opencv +dlib +python实现 import cv2import dlib# Path to the video framesvideo_folder='/data/datasets/HB_1_1_25_20170411_142850_03d4f4e4.mp4' #读取视频格式cap = cv2.VideoCapture(video_folder)tracker = dlib.correlation_trac...
GOTURN 代码复现 代码复现:1 我实在ubuntu上实现的 首先在github下载文中的代码。https://github.com/davheld/GOTURN2 在编译之前首先保证自己的电脑上编译了caffe opencv 以及考虑自己是使用cpu 实现还是gpu实现,我是通过gpu实现。3在 Goturn_master 上建立build 进行编译,可以通过 命令行进行mkdir buildcmake ..mak...
GOTURN 网络理解 GOTURN 网络理解作者采用完全离线的方式进行训练,然后对目标进行跟踪,将追踪能做到100fps(是指在gtx 680上),当使用泰坦x 时能到160+fps ,数度确实很快,这样的离线训练,以及能在680上实现100fps,在目前,有着一定的商业应用价值。在以前的深度跟踪的工作中大多数都是不能满足实时性的要求: 在这之前的cnn做到7fps穿插一下,这篇文章是2016年的,目前深度追踪发展迅速...
caffe prototxt 输入层的修改 一:目前网络的输入:lmdb leveldb hdf5 图片类型输入大多数网络由于寻求训练的数度 ,需要网络的输入是lmdb与leveldb的格式但是由于格式修改繁琐,因此 记录一下将网络修改为简单的图片输入格式:以: Alexnet 网络为例:网络部署文件如下 :name: "AlexNet"layer { name: "data" type: "Input" top: "da...
caffe 之 matlab 接口实现 做人脸识别--之人脸关键点检测 1 使用MtCNN进行人脸人脸关键点检测:github上有相关代码与论文,如果想要知道其原理需要进行对论文的阅读。下载MTCNN工具箱,使用github上下载:https://github.com/kpzhang93/MTCNN_face_detection_alignment注意:这里说的使用是在预先安装完成一下步骤:1 安装caffe https://github.com/BVLC/caff...
caffe 初步训练与测试 对于caffe训练mnist需要什么样的数据集,预处理成什么样子,在这里不再说(=@__@=)了?网上有很多哦!本次主要讲如何训练,测试自己网络准确率和识别自己的手写图片手写数字训练网络训练运行:y@y312:~/caffe-master$ ./examples/mnist/train_lenet.sh这个是通过脚本.sh 的方式运行、也可以使用sudo build/tools/caffe...
梯度下降之--导数与梯度理解 什么是梯度下降?首先引图(引用)(https://blog.csdn.net/han_xiaoyang/article/details/50178505) 梯度(Gradient)与梯度下降法(Gradient Descent): 深入理解的概念 对于梯度下降首先掌握的基础知识:回顾:1 导数与偏导数的区别 (1)导数导数是函数某一点,沿x轴的变化率: 方向导数方向导数:给一个方向,出一个...
caffe学习笔记初识siamese 对mnist数据集进行 训练:使用siamese训练: 1 siamese数据的输入是?leveldb 与hdf5 与lmdb 本次实验是使用mnist使用mnist数据集,转换为leveldb格式2 siamenes网络结构(1)siamese 网络单结构3 siamese 如何训练在ubuntu1首先获取data下获取 minst数据2转成leveldb格式文件 ./data/mnist/g...
caffe中solver优化代码解析1 caffe中solver相关代码有:几种优化方法的源文件如上:例如随机梯度下降:(关于梯度与梯度下降会介绍)SGD源码中:在:void Solver<Dtype>::Step(int iters){while(iter_<stop_iter){ net_->ClearParamDiffs(); //初始化参数 for diff for (int i=0;i&...
faster rcnn 如何训练voc2007数据集 及出现的小问题 首先下载voc数据集 可以用终端来下载 也可以用百度云wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tarwget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tarwget http://host.ro...
检测知识理解 做检测先了解:召回率(Recall),精确率(Precision),平均正确率(Average_precision(AP) ),交除并(Intersection-over-Union(IoU))http://blog.csdn.net/hysteric314/article/details/54093734博客中的理解• 传统检测方法• 人工设计特征+浅层分类器• 基于深度神经网络的方法• 原始数...