POJ - 3318 Matrix Multiplication(随机化算法)

You are given three n × n matrices AB and C. Does the equation A × B = C hold true?

Input

The first line of input contains a positive integer n (n ≤ 500) followed by the the three matrices AB and respectively. Each matrix's description is a block of n × n integers.

It guarantees that the elements of A and B are less than 100 in absolute value and elements of C are less than 10,000,000 in absolute value.

Output

Output "YES" if the equation holds true, otherwise "NO".

Sample Input
2
1 0
2 3
5 1
0 8
5 1
10 26
Sample Output
YES
Hint
Multiple inputs will be tested. So O(n 3) algorithm will get TLE.
#include<iostream>
#include<ctime>
using namespace std;
const int maxn = 505;
int A[maxn][maxn];
int B[maxn][maxn];
int C[maxn][maxn];
int main()
{
     int N;
     while(cin >> N)
     {
           bool flag=true;

     for (int i = 1; i <=N; i++)
        for (int j = 1; j <=N; j++)
     {
             scanf("%d",&A[i][j]);
     }

     for (int i = 1; i <=N; i++)
        for (int j = 1; j <=N; j++)
     {
             scanf("%d",&B[i][j]);
     }

     for (int i = 1; i <=N; i++)
        for (int j = 1; j <=N; j++)
     {
             scanf("%d",&C[i][j]);
     }

     srand((unsigned)time(NULL));
     for (int i = 0; i< 77777;i++)
     {
             int h = rand()%N + 1,l = rand()%N + 1;
             int temp = 0;
             for (int j = 1;j <=N;j++)
             {
                     temp += A[h][j] * B[j][l] ;
             }
             if(temp != C[h][l])
             {
                     flag = false;
                     break;
             }
     }

     if(flag)
     {
             cout<<"YES"<<endl;
     }
     else{
        cout<<"NO"<<endl;
     }
     }


}


阅读更多

Matrix Chain Multiplication

10-24

escriptionnSuppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. nSince matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose. nFor example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix. nThere are two different strategies to compute A*B*C, namely (A*B)*C and A*(B*C). nThe first one takes 15000 elementary multiplications, but the second one only 3500. nnYour job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy. nInputnInput consists of two parts: a list of matrices and a list of expressions. nThe first line of the input file contains one integer n (1 <= n <= 26), representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix. nThe second part of the input file strictly adheres to the following syntax (given in EBNF): nSecondPart = Line Line nnLine = Expression nnExpression = Matrix | "(" Expression Expression ")"nnMatrix = "A" | "B" | "C" | ... | "X" | "Y" | "Z"nOutputnFor each expression found in the second part of the input file, print one line containing the word "error" if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.nSample Inputn9nA 50 10nB 10 20nC 20 5nD 30 35nE 35 15nF 15 5nG 5 10nH 10 20nI 20 25nAnBnCn(AA)n(AB)n(AC)n(A(BC))n((AB)C)n(((((DE)F)G)H)I)n(D(E(F(G(HI)))))n((D(EF))((GH)I))nSample Outputn0n0n0nerrorn10000nerrorn3500n15000n40500n47500n15125

没有更多推荐了,返回首页