georgeli_007
码龄8年
关注
提问 私信
  • 博客:66,727
    动态:3
    66,730
    总访问量
  • 20
    原创
  • 528,521
    排名
  • 61
    粉丝
  • 0
    铁粉

个人简介:来自山东.混在北京,QQ:280751474,欢迎交流学习.

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2017-02-22
博客简介:

蓝色之旅的博客

博客描述:
来自山东.在北京工作过,目前在武汉,欢迎交流学习,QQ:280751474.
查看详细资料
个人成就
  • 获得47次点赞
  • 内容获得34次评论
  • 获得237次收藏
  • 代码片获得107次分享
创作历程
  • 1篇
    2019年
  • 15篇
    2018年
  • 5篇
    2017年
成就勋章
TA的专栏
  • 机器学习
    11篇
  • 个人知识管理
    8篇
  • Tensorflow
    7篇
  • 深度学习
    6篇
  • NLP(自然语言处理)
    3篇
兴趣领域 设置
  • 人工智能
    语音识别机器学习深度学习神经网络自然语言处理tensorflownlp数据分析
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

《TensorFlow与自然语言处理应用》勘误表

2019年8月,小作《TensorFlow与自然语言处理应用》(清华大学出版社)正式发行,非常感谢清华大学出版社夏毓彦等各位老师。个人对于机器学习、深度学习和NLP也是略懂皮毛,搬砖多些,加之时间有限,书中难免有些错谬之处,如有读者发现问题,欢迎您的批评指正。个人也在学习中,希望今后与大家一起学习探讨,共同进步。现将书中一些问题做些梳理,后期发现新的问题也会不断更新,谢谢大家。PS: 环境--...
原创
发布博客 2019.08.12 ·
1145 阅读 ·
3 点赞 ·
8 评论 ·
5 收藏

利用Tensorflow进行自然语言处理(NLP)系列之二高级Word2Vec

 本篇也同步笔者另一博客上(https://www.cnblogs.com/georgeli/p/9460961.html)一、概述在上一篇中,我们介绍了Word2Vec即词向量,对于Word Embeddings即词嵌入有了些基础,同时也阐述了Word2Vec算法的两个常见模型 :Skip-Gram模型和CBOW模型,本篇会对两种算法做出比较分析并给出其扩展模型-GloVe模型。 首...
原创
发布博客 2018.08.11 ·
2557 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

利用Tensorflow进行自然语言处理(NLP)系列之一Word2Vec

一、概述本文将要讨论NLP的一个重要话题:Word2Vec,它是一种学习词嵌入或分布式数字特征表示(即向量)的技术。其实,在开展自然语言处理任务时,一个比较重要的基础工作就是有关词表示层面的学习,因为良好的特征表示所对应的词,能够使得上下午语义内容得以很好地保留和整体串起来。举个例子,在特征表示层面,单词“forest”和单词“oven”是不同的,也很少在类似的上下文中出现,而单词“fores...
原创
发布博客 2018.08.08 ·
8265 阅读 ·
3 点赞 ·
14 评论 ·
28 收藏

TensorFlow实战之实现AlexNet经典卷积神经网络

       本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过。一、AlexNet模型及其基本原理阐述1、关于AlexNet            2012年,AlexKrizhevsky提出了深度卷积神经网络模型AlexNet,可以看作LeNet的一种更深更宽的版本。该模型包含了6亿3000万个连接...
原创
发布博客 2018.02.26 ·
1692 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

TensorFlow 实战之实现卷积神经网络

   本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过。一、相关性概念 1、卷积神经网络(ConvolutionNeural Network,CNN)            19世纪60年代科学家最早提出感受野(ReceptiveField)。当时通过对猫视觉皮层细胞研究,科学家发现每一个视觉神经...
原创
发布博客 2018.02.25 ·
3452 阅读 ·
3 点赞 ·
1 评论 ·
30 收藏

TensorFlow实战之实现自编码器过程

      本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过。一、相关概念1、稀疏性(Sparsity)及稀疏编码(Sparse Coding)         Sparsity 是当今机器学习领域中的一个重要话题。          Sparsity 的最重要的“客户”大概要属 high dim...
原创
发布博客 2018.02.24 ·
5511 阅读 ·
4 点赞 ·
4 评论 ·
22 收藏

机器视觉开源代码集合(转载)

来源:http://blog.csdn.net/flyingpig851334799/article/details/47449847。 一、特征提取Feature Extraction:SIFT [1] [Demo program][SIFT Library] [VLFeat] PCA-SIFT [2] [Project] Affine-SIFT [3] [Project] S...
转载
发布博客 2018.02.23 ·
993 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

TensorFlow实战之Softmax Regression识别手写数字

       本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过。一、相关概念1、MNIST    MNIST(Mixed National Institute of Standards and Technology database),作为一个常见的数据集,是一个巨大的手写数字数据集,经常被用来测试神...
原创
发布博客 2018.02.21 ·
2627 阅读 ·
1 点赞 ·
0 评论 ·
13 收藏

机器学习实践之利用SVD简化数据

本文根据最近学习机器学习书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过。一、概述1、相关背景       在日常生活中,我们经常接触到的餐馆可以划分为很多类别,比如美式、中式、日式、牛排馆、素食店,等等。是否考虑过这些类别真的够用吗?或许有人喜欢这些混合类别,或者类似中式素食店那样的子类别。如何才知道到底有多少类餐馆呢?当然,可以
原创
发布博客 2018.02.03 ·
732 阅读 ·
1 点赞 ·
1 评论 ·
6 收藏

机器学习实践之利用PCA简化数据

本文根据最近学习机器学习书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过。一、概述1、相关背景       在日常生活中,我们通过电视观看足球比赛,足球显示在电视屏幕上。这里,显示器大概包含100万像素,而球包含的像素较少,一般一千像素左右。通常在这里体育比赛中,我们要了解比赛的进展,就会关注给定时刻球的位置。所以,这里,我们实
原创
发布博客 2018.02.02 ·
519 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习之使用FP-growth算法来高效发现频繁项集

本文根据最近学习机器学习书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过。一、 概述1、相关背景      我们在日常工作生活中,总会在电脑上使用搜索引擎,输入一个单词或单词的一部分,搜索引擎会自动补全查询词项。而系统给出的这些查询推荐词项,是基于使用了一定的算法而得到的。他们通过查看互联网上的用词来查找经常一块出现的词对。显然这就需要
原创
发布博客 2018.02.01 ·
6251 阅读 ·
5 点赞 ·
1 评论 ·
26 收藏

机器学习实践之使用Apriori算法进行关联分析

本文根据最近学习机器学习书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过。一、概述1、背景故事      日常生活中,当我们去商店去购物的时候,实际上都包含了机器学习的当下和未来的场景应用,这包括物品的展示方式、购物之后的优惠券的提供、用户忠诚度计划等等。这些其实都离不开对大量数据的分析。商店希望从顾客身上获得更多的利润,所以必
原创
发布博客 2018.01.24 ·
2215 阅读 ·
0 点赞 ·
0 评论 ·
12 收藏

机器学习之利用K-均值聚类算法对未标注数据分组模型探讨

本文根据最近学习机器学习书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过。一、概述1、背景故事     在2000年和2004年美国总统大选中,候选人的得票非常接近。任一候选人得到的普选票数最大百分比为50.7%,最小百分比为47.9%。如果1%的候选人将手中的票投给另一个候选人,那么选举结果就会发生根本性的转折。实际上,在妥善
原创
发布博客 2018.01.14 ·
1000 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习实践之树回归学习总结

本文根据最近学习机器学习书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过。                一、概述1、认识CART算法     本文介绍一种新的叫做CART(Classification and Regression Trees, 分类回归树)的树构建算法,这种算法既可以用于分类也可以用做回归。CART算法是
原创
发布博客 2018.01.09 ·
1023 阅读 ·
2 点赞 ·
2 评论 ·
3 收藏

机器学习实践之预测数值型数据--回归

本文根据最近学习机器学习书籍网络文章的情况,特将一些学习情况做了归纳总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过。一、概述1、相关概念      1.1  回归         “回归”一词的来历: 今天我们知道的  回归是由达尔文(Charles Darwin)的表弟Francis Galton发明的。Galton于1877年完成了第一次回归预测,目
原创
发布博客 2018.01.03 ·
16976 阅读 ·
8 点赞 ·
2 评论 ·
46 收藏

机器学习实践之集成方法(随机森林和AdaBoost元算法提高分类性能)

本文根据最近学习机器学习书籍网络文章的情况,特将一些学习思路做了归纳整理,详情如下.如有不当之处,请各位大拿多多指点,在此谢过。               (未添加文章标签,特此补上,2018.1.14记。)一、概述1、概念理解       集成学习方法是指组合多个模型,以获得更好的效果,使集成的模型具有更强的泛化能力。对于多个模型,如何组合这些模型,主要有以下几种不同的方法  
原创
发布博客 2018.01.01 ·
2323 阅读 ·
0 点赞 ·
0 评论 ·
14 收藏

机器学习实践之支持向量机学习

       本文根据最近学习机器学习书籍网络文章的情况,特将一些学习思路做了归纳整理,详情如下.如有不当之处,请各位大拿多多指点,在此谢过。       第一部分第3点 寻找最大间隔,部分图片手写,图片没有经过很好的处理,如有不美观之处,请谅解。一  概述 1、概念理解     支持向量机(SupportVectorMachines,SVM),由于理解支持向量机需要一定的相关理论基础,这些理论基...
原创
发布博客 2017.12.21 ·
393 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习之Logistic回归

本文根据最近学习机器学习书籍 网络文章的情况,特将一些学习思路做了归纳整理,详情如下.如有不当之处,请各位大拿多多指点,在此谢过。         (今天发现未添加分类标签,特此补上,其他未变。2018.1.4记)   本文将开展最优化算法的学习和梳理。在日常生活中,我们遇到过很多最优化的问题,例如你打算明天从北京出发去青岛,如何在最短的时间里到达青岛?如何投入最少的工作量而获得最大的
原创
发布博客 2017.12.17 ·
3160 阅读 ·
11 点赞 ·
1 评论 ·
35 收藏

基于概率论的分类方法:朴素贝叶斯算法实践学习

本文根据最近学习机器学习书籍 网络文章的情况,特将一些学习思路做了归纳整理,详情如下.如有不当之处,请各位大拿多多指点,在此谢过.         通过前两篇文章,我们对于k-近邻算法\決策树算法的分类问题有了有了解,通过这些分类器可以得到相应的決策,給出"该数据实例属于哪一类"這類問題的明確答案.但在深入研究過程中,我們會發現,分類器有時不可避免地產生錯誤的結果,這時就要求分類器給出一個最優
原创
发布博客 2017.12.12 ·
2311 阅读 ·
1 点赞 ·
0 评论 ·
11 收藏

决策树实践学习

本文根据最近学习机器学习书籍 网络文章的情况,特将一些学习思路做了归纳整理,详情如下.如有不当之处,请各位大拿多多指点,在此谢过.一、决策树(decision tree)概述1、决策树概念       决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存
原创
发布博客 2017.12.06 ·
976 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏
加载更多