扫地大和尚
码龄8年
关注
提问 私信
  • 博客:1,468
    社区:1
    1,469
    总访问量
  • 2
    原创
  • 440,550
    排名
  • 0
    粉丝
  • 0
    铁粉

个人简介:平平无奇程序猿一枚,在此记录自己的学习和工作经验

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2017-02-24
博客简介:

qq_37640152的博客

查看详细资料
个人成就
  • 获得0次点赞
  • 内容获得0次评论
  • 获得2次收藏
创作历程
  • 2篇
    2023年
成就勋章
兴趣领域 设置
  • 大数据
    sqlhbasehadoophiveredisstormzookeepersparkflumekafkaflinknosqlkylinhdfsmapreducesqoop大数据数据仓库etletl工程师数据库开发finebiclickhouse
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

一、数据结构和算法概述

数据结构是一门研究非数值计算的程序设计问题中的操作对象,以及他们之间的关系和操作等相关问题的学科。数据结构就是把数据元素按照一定的关系组织起来的集合,用来组织和存储数据算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。根据一定的条件,对一些数据进行计算,得到需要的结果。
原创
发布博客 2023.02.01 ·
180 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Flink和Spark对比

有人认为:Spark是大数据的3G,而Flink则被视为大数据的4G,该观点仅供参考。从流处理的角度来讲,Spark基于微批处理,把流数据看成是一个个小的批处理数据块分别处理,所以延迟性能只能做到秒级。由于相同的原因,Spark只支持基于时间的窗口操作(处理时间或者事件时间),而Flink支持的窗口操作非常灵活,不仅支持时间窗口,还支持基于数据本身的窗口,开发者可以自由定义想要的窗口操作。两者相比较,Spark对SQL支持更好,相应的优化,扩展和性能更好,而Flink在SQL支持方面还有很大提升空间。
原创
发布博客 2023.01.31 ·
1288 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏