视觉SLAM十四讲 CH12 feature_training.cpp运行出错

问题:

在这里插入图片描述
编译过程中出现此警告,并且在程序运行时无法找到libopencv_core3.so.3.3文件

解决方法:

(1)寻找计算机是否有该文件

locate libopencv_core3.so.3.3

在我电脑下运行是如此:

之所以会有这个文件,是因为我的电脑之前在调试turbot3时安装了相关库,总之你要想办法让电脑具备此文件
(2)接着将终端切换至/etc/ld.so.conf.d

cd /etc/ld.so.conf.d

并创建OpenCV.conf文件,并在文件中写入OpenCV安装路径(系统默认为:/usr/local/lib),以及libopencv_core3.so.3.3所在路径

touch OpenCV.conf
sudo gedit OpenCV.conf

保存完毕后关掉文件,接着生效环境配置

sudo ldconfig

至此,再次运行程序,恭喜你已经成功了

视觉SLAM十四》中提到的ORB(Oriented FAST and Rotated BRIEF)是一种高效的特征检测和描述符匹配算法,常用于计算机视觉中的结构光标定、定位以及实时地图构建等场景。 Orb_CV.cpp 是一个典型的使用 ORB 算法的 C++ 示例代码片段,它通常会包含以下几个步骤: 1. **初始化**:首先导入必要的库,如 OpenCV 和它的非深度学习版本。 ```cpp #include <opencv2/features2d.hpp> #include <opencv2/calib3d.hpp> #include <opencv2/highgui.hpp> ``` 2. **图像读取**:加载待处理的图像。 ```cpp cv::Mat img = cv::imread("image.jpg", cv::IMREAD_GRAYSCALE); ``` 3. **ORB 特征检测和描述**:创建 ORB 检测器对象,并提取关键点及其描述符。 ```cpp cv::ORB orb; std::vector<cv::KeyPoint> keypoints; cv::Mat descriptors; orb.detectAndCompute(img, std::noArray(), keypoints, descriptors); ``` 4. **匹配描述符**:如果有多张图片,可以使用BFMatcher 对两个图像的描述符进行匹配。 ```cpp cv::BruteForceMatcher<ORBDesc> bfmatcher; std::vector<std::pair<cv::Point2f, cv::Point2f>> matches; bfmatcher.match(descriptors, otherDescriptors, matches); ``` 5. **结果可视化**:将关键点和匹配显示在原始图像上。 ```cpp cv::drawKeypoints(img, keypoints, img, Scalar(0), cv::DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS); cv::imshow("ORB Matches", img); cv::waitKey(); ``` 6. **保存匹配数据**:有时可能会保存这些关键点和匹配信息以便后续处理。 注意,这只是一个简化的示例,实际应用中可能会包括更复杂的数据结构管理和错误检查。完整的 `Orb_CV.cpp` 文件应包含了更多的细节,例如循环处理多帧图像,以及处理匹配的质量筛选等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值