python编译CUDA/c++扩展的过程中卡住
这将显示编译缓存目录的路径 "C:\Users\AppData\Local\torch_extensions\torch_extensions\Cache\py39_cu121\_hash_encoder",这是PyTorch用于存储编译扩展的临时文件和锁文件的地方。避免冲突:当有多个进程尝试编译同一个CUDA/C++扩展时,lock文件确保同一时间只有一个进程能进行编译,从而避免编译产物被不同进程同时写入或修改,造成数据损坏。删除锁文件后,重新运行编译命令,应该不会再因为锁文件的问题而被阻塞。








