SQL查询语句总是先执行SELECT?你们都错了。。。

很多 SQL 查询都是以 SELECT 开始的。不过,最近我跟别人解释什么是窗口函数,我在网上搜索”是否可以对窗口函数返回的结果进行过滤“这个问题,得出的结论是”窗口函数必须在 WHERE 和 GROUP BY 之后,所以不能”。于是我又想到了另一个问题:SQL 查询的执行顺序是怎样的?

好像这个问题应该很好回答,毕竟自己已经写了上万个 SQL 查询了,有一些还很复杂。但事实是,我仍然很难确切地说出它的顺序是怎样的。

SQL 查询的执行顺序

于是我研究了一下,发现顺序大概是这样的。SELECT 并不是最先执行的,而是在第五个。

图片

这张图回答了以下这些问题

这张图与 SQL 查询的语义有关,让你知道一个查询会返回什么,并回答了以下这些问题:

  • 可以在 GRROUP BY 之后使用 WHERE 吗?(不行,WHERE 是在 GROUP BY 之后!)

  • 可以对窗口函数返回的结果进行过滤吗?(不行,窗口函数是 SELECT 语句里,而 SELECT 是在 WHERE 和 GROUP BY 之后)

  • 可以基于 GROUP BY 里的东西进行 ORDER BY 吗?(可以,ORDER BY 基本上是在最后执行的,所以可以基于任何东西进行 ORDER BY)

  • LIMIT 是在什么时候执行?(在最后!)

但数据库引擎并不一定严格按照这个顺序执行 SQL 查询,因为为了更快地执行查询,它们会做出一些优化,这些问题会在以后的文章中解释。

所以:

  • 如果你想要知道一个查询语句是否合法,或者想要知道一个查询语句会返回什么,可以参考这张图;

  • 在涉及查询性能或者与索引有关的东西时,这张图就不适用了。

混合因素:列别名

有很多 SQL 实现允许你使用这样的语法:

SELECT CONCAT(first_name, ' ', last_name) AS full_name, count(*)
FROM table
GROUP BY full_name

从这个语句来看,好像 GROUP BY 是在 SELECT 之后执行的,因为它引用了 SELECT 中的一个别名。但实际上不一定要这样,数据库引擎可以把查询重写成这样:

SELECT CONCAT(first_name, ' ', last_name) AS full_name, count(*)
FROM table
GROUP BY CONCAT(first_name, ' ', last_name)

这样 GROUP BY 仍然先执行。
数据库引擎还会做一系列检查,确保 SELECT 和 GROUP BY 中的东西是有效的,所以会在生成执行计划之前对查询做一次整体检查。

数据库可能不按照这个顺序执行查询(优化)

在实际当中,数据库不一定会按照 JOIN、WHERE、GROUP BY 的顺序来执行查询,因为它们会进行一系列优化,把执行顺序打乱,从而让查询执行得更快,只要不改变查询结果。

这个查询说明了为什么需要以不同的顺序执行查询:

SELECT * FROM
owners LEFT JOIN cats ON owners.id = cats.owner
WHERE cats.name = 'mr darcy'

如果只需要找出名字叫“mr darcy”的猫,那就没必要对两张表的所有数据执行左连接,在连接之前先进行过滤,这样查询会快得多,而且对于这个查询来说,先执行过滤并不会改变查询结果。

数据库引擎还会做出其他很多优化,按照不同的顺序执行查询,不过我并不是这方面的专家,所以这里就不多说了。

LINQ 的查询以 FROM 开头

LINQ(C#和 VB.NET 中的查询语法)是按照 FROM…WHERE…SELECT 的顺序来的。这里有一个 LINQ 查询例子:

var teenAgerStudent = from s in studentList
                      where s.Age > 12 && s.Age < 20
                      select s;

pandas 中的查询也基本上是这样的,不过你不一定要按照这个顺序。我通常会像下面这样写 pandas 代码:

df = thing1.join(thing2)      # JOIN
df = df[df.created_at > 1000] # WHERE
df = df.groupby('something', num_yes = ('yes', 'sum')) # GROUP BY
df = df[df.num_yes > 2]       # HAVING, 对 GROUP BY 结果进行过滤
df = df[['num_yes', 'something1', 'something']] # SELECT, 选择要显示的列
df.sort_values('sometthing', ascending=True)[:30] # ORDER BY 和 LIMIT
df[:30]

这样写并不是因为 pandas 规定了这些规则,而是按照 JOIN/WHERE/GROUP BY/HAVING 这样的顺序来写代码会更有意义些。不过我经常会先写 WHERE 来改进性能,而且我想大多数数据库引擎也会这么做。

R 语言里的 dplyr 也允许开发人员使用不同的语法编写 SQL 查询语句,用来查询 Postgre、MySQL 和 SQLite。

最新2020整理收集的一些高频面试题(都整理成文档),有很多干货,包含mysql,netty,spring,线程,spring cloud、jvm、源码、算法等详细讲解,也有详细的学习规划图,面试题整理等, 需要获取这些内容的朋友请点击这里即可!

已标记关键词 清除标记
相关推荐
课程简介: 历经半个多月的时间,Debug亲自撸的 “企业员工角色权限管理平台” 终于完成了。正如字面意思,本课程讲解的是一个真正意义上的、企业级的项目实战,主要介绍了企业级应用系统中后端应用权限的管理,其中主要涵盖了六大核心业务模块、十几张数据库表。 其中的核心业务模块主要包括用户模块、部门模块、岗位模块、角色模块、菜单模块和系统日志模块;与此同时,Debug还亲自撸了额外的附属模块,包括字典管理模块、商品分类模块以及考勤管理模块等等,主要是为了更好地巩固相应的技术栈以及企业应用系统业务模块的开发流程! 核心技术栈列表: 值得介绍的是,本课程在技术栈层面涵盖了前端和后端的大部分常用技术,包括Spring Boot、Spring MVC、Mybatis、Mybatis-Plus、Shiro(身份认证与资源授权跟会话等等)、Spring AOP、防止XSS攻击、防止SQL注入攻击、过滤器Filter、验证码Kaptcha、热部署插件Devtools、POI、Vue、LayUI、ElementUI、JQuery、HTML、Bootstrap、Freemarker、一键打包部署运行工具Wagon等等,如下图所示: 课程内容与收益: 总的来说,本课程是一门具有很强实践性质的“项目实战”课程,即“企业应用员工角色权限管理平台”,主要介绍了当前企业级应用系统中员工、部门、岗位、角色、权限、菜单以及其他实体模块的管理;其中,还重点讲解了如何基于Shiro的资源授权实现员工-角色-操作权限、员工-角色-数据权限的管理;在课程的最后,还介绍了如何实现一键打包上传部署运行项目等等。如下图所示为本权限管理平台的数据库设计图: 以下为项目整体的运行效果截图: 值得一提的是,在本课程中,Debug也向各位小伙伴介绍了如何在企业级应用系统业务模块的开发中,前端到后端再到数据库,最后再到服务器的上线部署运行等流程,如下图所示:
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页