【Matplotlib】python绘图,同时沿x、y、z轴方向渐变颜色(按多轴渐变色)

博客介绍了如何使用PCA进行数据降维,并展示了如何通过修改matplotlib的scatter函数参数,实现二维和三维绘图中颜色沿多个维度渐变的效果。通过调整颜色值为坐标轴值的线性组合,可以实现沿x、y、z轴的渐变。这种方法为数据可视化提供了更丰富的视觉表现。
摘要由CSDN通过智能技术生成

通常绘制的图颜色只按一个方向渐变,如PCA降维后一个例子

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.decomposition import PCA
import numpy as np

def show_pca_2d():
    X = np.loadtxt("exp4/normal.txt",delimiter=",",dtype=np.float32)
    pca = PCA(n_components=2)
    newX = pca.fit_transform(X)
    print(pca.explained_variance_ratio_)
    xs = newX[:,0]
    ys = newX[:,1]
    plt.xlabel('component_x')
    plt.ylabel('component_y')
    # 沿x轴方向渐变颜色
    plt.scatter(xs,ys,c=xs)
    plt.show()

如何同时沿x,y轴方向渐变?后面不知是灵感来了还是怎么着,好玩改了下,结果真成了:

将代码倒数第二行:

plt.scatter(xs,ys,c=xs)

改成

plt.scatter(xs,ys,c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值