通常绘制的图颜色只按一个方向渐变,如PCA降维后一个例子

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.decomposition import PCA
import numpy as np
def show_pca_2d():
X = np.loadtxt("exp4/normal.txt",delimiter=",",dtype=np.float32)
pca = PCA(n_components=2)
newX = pca.fit_transform(X)
print(pca.explained_variance_ratio_)
xs = newX[:,0]
ys = newX[:,1]
plt.xlabel('component_x')
plt.ylabel('component_y')
# 沿x轴方向渐变颜色
plt.scatter(xs,ys,c=xs)
plt.show()
如何同时沿x,y轴方向渐变?后面不知是灵感来了还是怎么着,好玩改了下,结果真成了:
将代码倒数第二行:
plt.scatter(xs,ys,c=xs)
改成
plt.scatter(xs,ys,c

博客介绍了如何使用PCA进行数据降维,并展示了如何通过修改matplotlib的scatter函数参数,实现二维和三维绘图中颜色沿多个维度渐变的效果。通过调整颜色值为坐标轴值的线性组合,可以实现沿x、y、z轴的渐变。这种方法为数据可视化提供了更丰富的视觉表现。
最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=109092166&d=1&t=3&u=914ecc3dd13c427a985cd67bfa11de7f)
1178

被折叠的 条评论
为什么被折叠?



